Skip to main content
Log in

Differential Localization of Acid-Sensing Ion Channels 1 and 2 in Human Cutaneus Pacinian Corpuscles

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Acid-sensing ion channels (ASICs) are the members of the degenerin/epithelial sodium channel (Deg/ENaC) superfamily which mediate different sensory modalities including mechanosensation. ASICs have been detected in mechanosensory neurons as well as in peripheral mechanoreceptors. We now investigated the distribution of ASIC1, ASIC2, and ASIC3 proteins in human cutaneous Pacinian corpuscles using immunohistochemistry and laser confocal-scanner microscopy. We detected different patterns of expression of these proteins within Pacinian corpuscles. ASIC1 was detected in the central axon co-expressed with RT-97 protein, ASIC2 was expressed by the lamellar cells of the inner core co-localized with S100 protein, and ASIC3 was absent. These results demonstrate for the first time the differential distribution of ASIC1 and ASIC2 in human rapidly adapting low-threshold mechanoreceptors, and suggest specific roles of both proteins in mechanotransduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Referencs

  • Alvarez de la Rosa D, Zhang P, Shao D, White F, Canessa CM (2002) Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system. Proc Natl Acad Sci USA 99:2326–2331

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, England S, Akopian AN, Wood JN (1998) A sensory neuron-specific, proton-gated ion channel. Proc Natl Acad Sci USA 95:10240–10245

    Article  CAS  PubMed  Google Scholar 

  • Drew LJ, Rohrer DK, Price MP, Blaver KE, Cockayne DA, Cesare P, Wood JN (2004) Acid-sensing ion channels ASIC2 and ASIC3 do not contribute to mechanically activated currents in mammalian sensory neurones. J Physiol (Lond) 556:691–710

    Article  CAS  Google Scholar 

  • Drummond HA, Abboud FM, Welsh MJ (2000) Localization of β and γ subunits of ENaC in sensory nerve endings in the rat foot pad. Brain Res 884:1–12

    Article  CAS  PubMed  Google Scholar 

  • Eid SR, Cortright DN (2009) Transient receptor potential channels on sensory nerves. Handb Exp Pharmacol 194:261–281

    Article  CAS  PubMed  Google Scholar 

  • Ernstrom GG, Chalfie M (2002) Genetics of sensory mechanotransduction. Annu Rev Genet 36:411–453

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Añoveros J, Samad TA, Zuvela-Jelaska L, Woolf CJ, Corey DP (2001) Transport and localization of the DEG/ENaC ion channel BNaC1α to peripheral mechanosensory terminals of dorsal root ganglia neurons. J Neurosci 21:2678–2686

    PubMed  Google Scholar 

  • Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413:194–202

    Article  CAS  PubMed  Google Scholar 

  • Hitomi Y, Suzuki A, Kawano Y, Nozawa-Inoue K, Inoue M, Maeda T (2009) Immunohistochemical detection of ENaCbeta in the terminal Schwann cells associated with the periodontal Ruffini endings of the rat incisor. Biomed Res 30:113–119

    Article  CAS  PubMed  Google Scholar 

  • Holzer P (2009) Acid-sensitive ion channels and receptors. Handb Exp Pharmacol 194:283–332

    Article  CAS  PubMed  Google Scholar 

  • Hughes PA, Brierley SM, Young RL, Blackshaw LA (2007) Localization and comparative analysis of acid-sensing ion channel (ASIC1, 2, and 3) mRNA expression in mouse colonic sensory neurons within thoracolumbar dorsal root ganglia. J Comp Neurol 500:863–875

    Article  CAS  PubMed  Google Scholar 

  • Johnson KO (2002) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11:455–461

    Article  Google Scholar 

  • Kawamata T, Ninomiya T, Toriyabe M, Yamamoto J, Niiyama Y, Omote K, Namiki A (2006) Immunohistochemical analysis of acid-sensing ion channel 2 expression in rat dorsal root ganglion and effects of axotomy. Neuroscience 143:175–187

    Article  CAS  PubMed  Google Scholar 

  • Krishtal O (2003) The ASICs: signaling molecules? Modulators? Trends Neurosci 26:477–483

    Article  CAS  PubMed  Google Scholar 

  • Lin YW, Min MY, Lin CC, Chen WN, Wu WL, Yu HM, Chen CC (2008) Identification and characterization of a subset of mouse sensory neurons that express acid-sensing ion channel 3. Neuroscience 24(151):544–1557

    Article  Google Scholar 

  • Lingueglia E (2007) Acid-sensing ion channels in sensory perception. J Biol Chem 282:17325–17329

    Article  CAS  PubMed  Google Scholar 

  • Lumpkin EA, Katerine MJ (2007) Mechanisms of sensory transduction in the skin. Nature 445:858–865

    Article  CAS  PubMed  Google Scholar 

  • Mano I, Driscoll M (1999) DEG/ENaC channels: a touchy superfamily that watches its salt. BioEssays 21:568–578

    Article  CAS  PubMed  Google Scholar 

  • McDonald FJ, Price MP, Snyder PM, Welsh MJ (1995) Cloning and expression of the β- and γ-subunits of the human epithelial sodium channel. Am J Physiol 268:11157–11163

    Google Scholar 

  • McIlwrath SL, Hu J, Anirudhan G, Shin JB, Lewin GR (2005) The sensory mechanotransduction ion channel ASIC2 (acid sensitive ion channel 2) is regulated by neurotrophin availability. Neuroscience 131:499–511

    Article  CAS  PubMed  Google Scholar 

  • Montaño JA, Calavia MG, García-Suárez O, Suarez-Quintanilla JA, Gálvez A, Pérez-Piñera P, Cobo J, Vega JA (2009) The expression of ENa(+)C and ASIC2 proteins in Pacinian corpuscles is differently regulated by TrkB and its ligands BDNF and NT-4. Neurosci Lett 463:114–118

    Article  PubMed  Google Scholar 

  • Munger BL, Ide C (1998) The structure and function of cutaneous sensory receptors. Arch Histol Cytol 51:1–34

    Article  Google Scholar 

  • Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10:11–20

    Article  CAS  PubMed  Google Scholar 

  • Page AJ, Brierley SM, Martin CM, Martinez-Salgado C, Wemmie JA, Brennan TJ, Symonds E, Omari T, Lewin GR, Welsh MJ, Blackshaw LA (2004) The ion channel ASIC1 contributes to visceral but not cutaneous mechanoreceptor function. Gastroenterology 127:1739–1747

    Article  CAS  PubMed  Google Scholar 

  • Page AJ, Brierley SM, Martin CM, Price MP, Symonds E, Butler R, Wemmie JA, Blackshaw LA (2005) Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut 54:1408–1415

    Article  CAS  PubMed  Google Scholar 

  • Pawson L, Slepecky NB, Bolanowski SJ (2000) Immunocytochemical identification of proteins within the Pacinian corpuscle. Somatosens Mot Res 17:159–170

    Article  CAS  PubMed  Google Scholar 

  • Pawson L, Checkosky CM, Pack AK, Bolanowski SJ (2008) Mesenteric and tactile Pacinian corpuscles are anatomically and physiologically comparable. Somatosens Mot Res 25:194–206

    Article  PubMed  Google Scholar 

  • Perl ER (1992) Function dorsal root ganglion neurons: an overview. In: Scott SA (ed) Sensory neurons: diversity, development and plasticity. Oxford University Press, New York, pp 3–23

    Google Scholar 

  • Price MP, Snyder PM, Welsh MJ (1996) Cloning and expression of a novel human brain Na+ channel. J Biol Chem 271:7879–7882

    Article  CAS  PubMed  Google Scholar 

  • Price MP, Lewin GR, McIlwrath SL, Cheng C, Xie J, Heppenstall PA, Stucky CL, Mannsfeldt AG, Brennan TJ, Drummond HA, Qiao J, Benson CJ, Tarr DE, Hrstka RF, Yang B, Williamson RA, Welsh MJ (2000) The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407:1007–1011

    Article  CAS  PubMed  Google Scholar 

  • Price MP, McIlwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ (2001) The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32:1071–1083

    Article  CAS  PubMed  Google Scholar 

  • Roza C, Puel JL, Kress M, Baron A, Diochot S, Lazdunski M, Waldmann R (2004) Knockout of the ASIC2 channel in mice does not impair cutaneous mechanosensation, visceral mechanonociception and hearing. J Physiol 558(Pt 2):659–669

    Article  CAS  PubMed  Google Scholar 

  • Staniland AA, McMahon SB (2009) Mice lacking acid-sensing ion channels (ASIC) 1 or 2, but not ASIC3, show increased pain behaviour in the formalin test. Eur J Pain 13:554–563

    Article  CAS  PubMed  Google Scholar 

  • Tsunozaki M, Bautista DM (2009) Mammalian somatosensory mechanotransduction. Curr Opin Neurobiol 19:362–369

    Article  CAS  PubMed  Google Scholar 

  • Vega JA, Haro JJ, Del Valle ME (1996) Immunohistochemistry of human cutaneous Meissner and pacinian corpuscles. Microsc Res Tech 34:351–361

    Article  CAS  PubMed  Google Scholar 

  • Vega JA, García-Suárez O, Montaño JA, Pardo B, Cobo JM (2009) The Meissner and Pacinian sensory corpuscles revisited new data from the last decade. Microsc Res Tech 72:299–309

    Article  PubMed  Google Scholar 

  • Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997) A proton-gated cation channel involved in acid-sensing. Nature 386:173–177

    Article  CAS  PubMed  Google Scholar 

  • Wemmie JA, Price MP, Welsh MJ (2006) Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci 29:578–586

    Article  CAS  PubMed  Google Scholar 

  • Zelena J (1994) Nerves and mechanoreceptors. Chapman & Hall, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Vega.

Additional information

M. G. Calavia and J. A. Montaño contributed equally to this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10571_2010_9511_MOESM1_ESM.jpg

Supplementary material—Legend for figure—Confocal laser-scanning images of ASIC2 (green) and RT-97 (red) in human Pacinian corpuscles. Left top: merge image of ASIC2 (green) and RT-97 (red) original image. Center top: merge image of ASIC2 (green) and RT-97 (red) covered by mask (white dots). Mask represents a region of interest draw on the cytofluorogram around the high red signal dots. Right top: merge image of ASIC2 (green) and RT-97 (red) after gamma correction of the green signal. Left bottom: 2D cytofluorogram from the two detection channels from the original image. Every dot of cytofluorogram represents an intensity value pair from the two detection channels. Red signal dots are not close to the Y-axis because the green signal has been acquired with high gain amplification than the red signal. A region of interest on the cytofluorogram around the high red signal dots had been drawn and it is represented as a mask (white dots) on the merge image (centre bottom). Right down: 2D cytofluorogram from the two detection channels after the green gamma correction. Red signal is now adjusted to the Y-axis and the region of interest shows not dots. There is no colocalization. (JPG 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calavia, M.G., Montaño, J.A., García-Suárez, O. et al. Differential Localization of Acid-Sensing Ion Channels 1 and 2 in Human Cutaneus Pacinian Corpuscles. Cell Mol Neurobiol 30, 841–848 (2010). https://doi.org/10.1007/s10571-010-9511-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9511-2

Keywords

Navigation