Skip to main content

Advertisement

Log in

Gene Expression Profiling of Cultured Cells From Brainstem of Newborn Spontaneously Hypertensive and Wistar Kyoto Rats

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The spontaneously hypertensive rat (SHR) is a good model to study several diseases such as the attention-deficit hyperactivity disorder, cardiopulmonary impairment, nephropathy, as well as hypertension, which is a multifactor disease that possibly involves alterations in gene expression in hypertensive relative to normotensive subjects. In this study, we used high-density oligoarrays to compare gene expression profiles in cultured neurons and glia from brainstem of newborn normotensive Wistar Kyoto (WKY) and SHR rats. We found 376 genes differentially expressed between SHR and WKY brainstem cells that preferentially map to 17 metabolic/signaling pathways. Some of the pathways and regulated genes identified herein are obviously related to cardiovascular regulation; in addition there are several genes differentially expressed in SHR not yet associated to hypertension, which may be attributed to other differences between SHR and WKY strains. This constitute a rich resource for the identification and characterization of novel genes associated to phenotypic differences observed in SHR relative to WKY, including hypertension. In conclusion, this study describes for the first time the gene profiling pattern of brainstem cells from SHR and WKY rats, which opens up new possibilities and strategies of investigation and possible therapeutics to hypertension, as well as for the understanding of the brain contribution to phenotypic differences between SHR and WKY rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anantharam V, Lehrmann E, Kanthasamy A, Yang Y, Banerjee P, Becker KG, Freed WJ, Kanthasamy AG (2007) Microarray analysis of oxidative stress regulated genes in mesencephalic dopaminergic neuronal cells: relevance to oxidative damage in Parkinson’s disease. Neurochem Int 50:834–847. doi:10.1016/j.neuint.2007.02.003

    Article  PubMed  CAS  Google Scholar 

  • Aston C, Jiang L, Sokolov BP (2004) Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J Neurosci Res 77:858–866. doi:10.1002/jnr.20208

    Article  PubMed  CAS  Google Scholar 

  • Bamji SX, Majdan M, Pozniak CD, Belliveau DJ, Aloyz R, Kohn J, Causing CG, Miller FD (1998) The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J Cell Biol 140:911–923. doi:10.1083/jcb.140.4.911

    Article  PubMed  CAS  Google Scholar 

  • Bassan H, Bassan M, Pinhasov A, Kariv N, Giladi E, Gozes I, Harel S (2005) The pregnant spontaneously hypertensive rat as a model of asymmetric intrauterine growth retardation and neurodevelopmental delay. Hypertens Pregnancy 24:201–211. doi:10.1080/10641950500281142

    Article  PubMed  Google Scholar 

  • Biscoe TJ, Sampson SR (1970) Field potentials evoked in the brain stem of the cat by stimulation of the carotid sinus, glossopharyngeal, aortic and superior laryngeal nerves. J Physiol 209:341–358

    PubMed  CAS  Google Scholar 

  • Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW (2004) Incipient Alzheimer’s disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci USA 101:2173–2178. doi:10.1073/pnas.0308512100

    Article  PubMed  CAS  Google Scholar 

  • Blessing WW, Furness JB, Costa M, West MJ, Chalmers JP (1981) Projection of ventrolateral medullary (A1) catecholamine neurons toward nucleus tractus solitarii. Cell Tissue Res 220:27–40. doi:10.1007/BF00209963

    Article  PubMed  CAS  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193. doi:10.1093/bioinformatics/19.2.185

    Article  PubMed  CAS  Google Scholar 

  • Boone JB Jr, McMillen D (1994) Proenkephalin gene expression is altered in the brain of spontaneously hypertensive rats during the development of hypertension. Brain Res Mol Brain Res 24:320–326. doi:10.1016/0169-328X(94)90145-7

    PubMed  CAS  Google Scholar 

  • Brakeman PR, Lanahan AA, O’Brien R, Roche K, Barnes CA, Huganir RL, Worley PF (1997) Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386:284–288. doi:10.1038/386284a0

    Article  PubMed  CAS  Google Scholar 

  • Carrettiero DC, Fior-Chadi DR (2004) Adenosine A1 receptor distribution in the nucleus tractus solitarii of normotensive and spontaneously hypertensive rats. J Neural Transm 111:465–473. doi:10.1007/s00702-003-0104-9

    Article  PubMed  CAS  Google Scholar 

  • Catania MV, D’Antoni S, Bonaccorso CM, Aronica E, Bear MF, Nicoletti F (2007) Group I metabotropic glutamate receptors: a role in neurodevelopmental disorders? Mol Neurobiol 35:298–307. doi:10.1007/s12035-007-0022-1

    Article  PubMed  CAS  Google Scholar 

  • Colombari E, Sato MA, Cravo SL, Bergamaschi CT, Campos RR Jr, Lopes OU (2001) Role of the medulla oblongata in hypertension. Hypertension 38:549–554

    PubMed  CAS  Google Scholar 

  • Cui T, Nakagami H, Iwai M, Takeda Y, Shiuchi T, Tamura K, Daviet L, Horiuchi M (2000) ATRAP, novel AT1 receptor associated protein, enhances internalization of AT1 receptor and inhibits vascular smooth muscle cell growth. Biochem Biophys Res Commun 279:938–941. doi:10.1006/bbrc.2000.4055

    Article  PubMed  CAS  Google Scholar 

  • Daviet L, Lehtonen JY, Tamura K, Griese DP, Horiuchi M, Dzau VJ (1999) Cloning and characterization of ATRAP, a novel protein that interacts with the angiotensin II type 1 receptor. J Biol Chem 274:17058–17062. doi:10.1074/jbc.274.24.17058

    Article  PubMed  CAS  Google Scholar 

  • de Bartolomeis A, Iasevoli F (2003) The Homer family and the signal transduction system at glutamatergic postsynaptic density: potential role in behavior and pharmacotherapy. Psychopharmacol Bull 37:51–83

    PubMed  Google Scholar 

  • De Vries L, Zheng B, Fischer T, Elenko E, Farquhar MG (2000) The regulator of G protein signaling family. Annu Rev Pharmacol Toxicol 40:235–271. doi:10.1146/annurev.pharmtox.40.1.235

    Article  PubMed  Google Scholar 

  • Dickhout JG, Lee RM (1998) Blood pressure and heart rate development in young spontaneously hypertensive rats. Am J Physiol 274:H794–H800

    PubMed  CAS  Google Scholar 

  • Dickson KM, Bhakar AL, Barker PA (2004) TRAF6-dependent NF-kB transcriptional activity during mouse development. Dev Dyn 231:122–127. doi:10.1002/dvdy.20110

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Mychaleckyj JC, Hegde AN (2007) Full length cloning and expression analysis of splice variants of regulator of G-protein signaling RGS4 in human and murine brain. Gene 401:46–60. doi:10.1016/j.gene.2007.07.002

    Article  PubMed  CAS  Google Scholar 

  • Diz DI, Barnes KL, Ferrario CM (1984) Hypotensive actions of microinjections of angiotensin II into the dorsal motor nucleus of the vagus. J Hypertens Suppl 2:S53–S56

    PubMed  CAS  Google Scholar 

  • Edwards MA, Loxley RA, Powers-Martin K, Lipski J, McKitrick DJ, Arnolda LF, Phillips JK (2004) Unique levels of expression of N-methyl-D-aspartate receptor subunits and neuronal nitric oxide synthase in the rostral ventrolateral medulla of the spontaneously hypertensive rat. Brain Res Mol Brain Res 129:33–43. doi:10.1016/j.molbrainres.2004.06.013

    Article  PubMed  CAS  Google Scholar 

  • El-Husseini AE, Guthrie H, Snutch TP, Vincent SR (1997) Molecular cloning of a mammalian homologue of the yeast vesicular transport protein vps45. Biochim Biophys Acta 1325:8–12. doi:10.1016/S0005-2736(97)00014-X

    Article  PubMed  CAS  Google Scholar 

  • Feld LG, Cachero S, Van Liew JB, Zamlauski-Tucker M, Noble B (1990) Enalapril and renal injury in spontaneously hypertensive rats. Hypertension 16:544–554

    PubMed  CAS  Google Scholar 

  • Ferrari MF, Raizada MK, Fior-Chadi DR (2008) Differential regulation of the renin-angiotensin system by nicotine in WKY and SHR glia. J Mol Neurosci 35:151–160. doi:10.1007/s12031-007-9025-7

    Article  PubMed  CAS  Google Scholar 

  • Ferrari MFR, Fior-Chadi DR (2005) Differential expression of nNOS mRNA and protein in the nucleus tractus solitarii of young and aged Wistar-Kyoto and spontaneously hypertensive rats. J Hypertens 23:1683–1690

    Article  PubMed  CAS  Google Scholar 

  • Ferrari MFR, Raizada MK, Fior-Chadi DR (2007) Nicotine modulates the Renin-Angiotensin system of cultured neurons and glial cells from cardiovascular brain areas of wistar kyoto and spontaneously hypertensive rats. J Mol Neurosci 33:284–293. doi:10.1007/s12031-007-9006-x

    Article  PubMed  CAS  Google Scholar 

  • Figiel I, Dzwonek K (2007) TNFalpha and TNF receptor 1 expression in the mixed neuronal-glial cultures of hippocampal dentate gyrus exposed to glutamate or trimethyltin. Brain Res 1131:17–28. doi:10.1016/j.brainres.2006.10.095

    Article  PubMed  CAS  Google Scholar 

  • Folkow B (1975) Central neurohormonal mechanisms in spontaneously hypertensive rats compared with human essential hypertension. Clin Sci Mol Med Suppl 2:205s–214s

    PubMed  CAS  Google Scholar 

  • Frohlich ED (1986) Is the spontaneously hypertensive rat a model for human hypertension? J Hypertens Suppl 4:S15–S19

    PubMed  CAS  Google Scholar 

  • Garcia-Osta A, Tsokas P, Pollonini G, Landau EM, Blitzer R, Alberini CM (2006) MuSK expressed in the brain mediates cholinergic responses, synaptic plasticity, and memory formation. J Neurosci 26:7919–7932. doi:10.1523/JNEUROSCI.1674-06.2006

    Article  PubMed  CAS  Google Scholar 

  • Geetha T, Kenchappa RS, Wooten MW, Carter BD (2005) TRAF6-mediated ubiquitination regulates nuclear translocation of NRIF, the p75 receptor interactor. EMBO J 24:3859–3868. doi:10.1038/sj.emboj.7600845

    Article  PubMed  CAS  Google Scholar 

  • Guo ZL, Li P, Longhurst JC (2002) Central pathways in the pons and midbrain involved in cardiac sympathoexcitatory reflexes in cats. Neuroscience 113:435–447. doi:10.1016/S0306-4522(02)00173-2

    Article  PubMed  CAS  Google Scholar 

  • Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7:335–346. doi:10.1038/nrn1902

    Article  PubMed  CAS  Google Scholar 

  • Hallback M, Weiss L (1977) Mechanisms of spontaneous hypertension in rats. Med Clin North Am 61:593–609

    PubMed  CAS  Google Scholar 

  • Hosack DA, Dennis G Jr, Sherman BT, Lane HC, Lempicki RA (2003) Identifying biological themes within lists of genes with EASE. Genome Biol 4:R70. doi:10.1186/gb-2003-4-10-r70

    Article  PubMed  Google Scholar 

  • Irmak MK, Sizlan A (2006) Essential hypertension seems to result from melatonin-induced epigenetic modifications in area postrema. Med Hypotheses 66:1000–1007. doi:10.1016/j.mehy.2005.10.016

    Article  PubMed  CAS  Google Scholar 

  • Iwai N, Inagami T (1992) Identification of a candidate gene responsible for the high blood pressure of spontaneously hypertensive rats. J Hypertens 10:1155–1157. doi:10.1097/00004872-199210000-00007

    Article  PubMed  CAS  Google Scholar 

  • Kaehler ST, Salchner P, Singewald N, Philippu A (2004) Differential amino acid transmission in the locus coeruleus of Wistar Kyoto and spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 370:381–387. doi:10.1007/s00210-004-0987-5

    Article  PubMed  CAS  Google Scholar 

  • Kannan H, Yamashita H (1985) Connections of neurons in the region of the nucleus tractus solitarius with the hypothalamic paraventricular nucleus: their possible involvement in neural control of the cardiovascular system in rats. Brain Res 329:205–212. doi:10.1016/0006-8993(85)90526-8

    Article  PubMed  CAS  Google Scholar 

  • Kinkead R, Balon N, Genest SE, Gulemetova R, Laforest S, Drolet G (2008) Neonatal maternal separation and enhancement of the inspiratory (phrenic) response to hypoxia in adult rats: disruption of GABAergic neurotransmission in the nucleus tractus solitarius. Eur J Neurosci 27:1174–1188. doi:10.1111/j.1460-9568.2008.06082.x

    Article  PubMed  Google Scholar 

  • Kishimoto I, Garbers DL (1997) Physiological regulation of blood pressure and kidney function by guanylyl cyclase isoforms. Curr Opin Nephrol Hypertens 6:58–63. doi:10.1097/00041552-199701000-00011

    Article  PubMed  CAS  Google Scholar 

  • Kivell BM, McDonald FJ, Miller JH (2001) Method for serum-free culture of late fetal and early postnatal rat brainstem neurons. Brain Res Brain Res Protoc 6:91–99. doi:10.1016/S1385-299X(00)00037-4

    Article  PubMed  CAS  Google Scholar 

  • Kodavanti UP, Schladweiler MC, Ledbetter AD, Watkinson WP, Campen MJ, Winsett DW, Richards JR, Crissman KM, Hatch GE, Costa DL (2000) The spontaneously hypertensive rat as a model of human cardiovascular disease: evidence of exacerbated cardiopulmonary injury and oxidative stress from inhaled emission particulate matter. Toxicol Appl Pharmacol 164:250–263. doi:10.1006/taap.2000.8899

    Article  PubMed  CAS  Google Scholar 

  • Kuhlman PA, Hughes CA, Bennett V, Fowler VM (1996) A new function for adducin. Calcium/calmodulin-regulated capping of the barbed ends of actin filaments. J Biol Chem 271:7986–7991. doi:10.1074/jbc.271.14.7986

    Article  PubMed  CAS  Google Scholar 

  • Kurtz TW, Montano M, Chan L, Kabra P (1989) Molecular evidence of genetic heterogeneity in Wistar-Kyoto rats: implications for research with the spontaneously hypertensive rat. Hypertension 13:188–192

    PubMed  CAS  Google Scholar 

  • Lee TS, Mane S, Eid T, Zhao H, Lin A, Guan Z, Kim JH, Schweitzer J, King-Stevens D, Weber P, Spencer SS, Spencer DD, de Lanerolle NC (2007) Gene expression in temporal lobe epilepsy is consistent with increased release of glutamate by astrocytes. Mol Med 13:1–13

    PubMed  CAS  Google Scholar 

  • Lipski J, McAllen RM, Spyer KM (1975) The sinus nerve and baroreceptor input to the medulla of the cat. J Physiol 251:61–78

    PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods (San Diego, Calif.) 25:402–408

    CAS  Google Scholar 

  • Lopez-Ilasaca M, Liu X, Tamura K, Dzau VJ (2003) The angiotensin II type I receptor-associated protein, ATRAP, is a transmembrane protein and a modulator of angiotensin II signaling. Mol Biol Cell 14:5038–5050. doi:10.1091/mbc.E03-06-0383

    Article  PubMed  CAS  Google Scholar 

  • Mann SJ (2003) Neurogenic essential hypertension revisited: the case for increased clinical and research attention. Am J Hypertens 16:881–888. doi:10.1016/S0895-7061(03)00978-6

    Article  PubMed  Google Scholar 

  • Masuda Y, Shima G, Aiuchi T, Horie M, Hori K, Nakajo S, Kajimoto S, Shibayama-Imazu T, Nakaya K (2004) Involvement of tumor necrosis factor receptor-associated protein 1 (TRAP1) in apoptosis induced by beta-hydroxyisovalerylshikonin. J Biol Chem 279:42503–42515. doi:10.1074/jbc.M404256200

    Article  PubMed  CAS  Google Scholar 

  • Meneses A, Hong E (1998) Spontaneously hypertensive rats: a potential model to identify drugs for treatment of learning disorders. Hypertension 31:968–972

    PubMed  CAS  Google Scholar 

  • Menezes RC, Fontes MA (2007) Cardiovascular effects produced by activation of GABA receptors in the rostral ventrolateral medulla of conscious rats. Neuroscience 144:336–343. doi:10.1016/j.neuroscience.2006.08.062

    Article  PubMed  CAS  Google Scholar 

  • Mishima A, Shigematsu K, Harada N, Himeno A, Taguchi T, Ishinaga Y, Nabika T (2000) Strain differences in SA gene expression in brain and kidney of normotensive and hypertensive rats. Cell Mol Neurobiol 20:633–652. doi:10.1023/A:1007042506936

    Article  PubMed  CAS  Google Scholar 

  • Mok H, Shin H, Kim S, Lee JR, Yoon J, Kim E (2002) Association of the kinesin superfamily motor protein KIF1Balpha with postsynaptic density-95 (PSD-95), synapse-associated protein-97, and synaptic scaffolding molecule PSD-95/discs large/zona occludens-1 proteins. J Neurosci 22:5253–5258

    PubMed  CAS  Google Scholar 

  • Nakamura-Palacios EM, Caldas CK, Fiorini A, Chagas KD, Chagas KN, Vasquez EC (1996) Deficits of spatial learning and working memory in spontaneously hypertensive rats. Behav Brain Res 74:217–227. doi:10.1016/0166-4328(95)00165-4

    Article  PubMed  CAS  Google Scholar 

  • Nystuen AM, Schwendinger JK, Sachs AJ, Yang AW, Haider NB (2007) A null mutation in VAMP1/synaptobrevin is associated with neurological defects and prewean mortality in the lethal-wasting mouse mutant. Neurogenetics 8:1–10. doi:10.1007/s10048-006-0068-7

    Article  PubMed  CAS  Google Scholar 

  • Okamoto K, Tabei R, Yamori Y, Ooshima A (1973) Spontaneously hypertensive rat as a useful model for hypertension research. Jikken Dobutsu 22(Suppl):289–298

    PubMed  Google Scholar 

  • Raptis A, Torrejon-Escribano B, Gomez de Aranda I, Blasi J (2005) Distribution of synaptobrevin/VAMP 1 and 2 in rat brain. J Chem Neuroanat 30:201–211. doi:10.1016/j.jchemneu.2005.08.002

    Article  PubMed  CAS  Google Scholar 

  • Ross EM, Wilkie TM (2000) GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 69:795–827. doi:10.1146/annurev.biochem.69.1.795

    Article  PubMed  CAS  Google Scholar 

  • Russell VA (2003) Dopamine hypofunction possibly results from a defect in glutamate-stimulated release of dopamine in the nucleus accumbens shell of a rat model for attention deficit hyperactivity disorder–the spontaneously hypertensive rat. Neurosci Biobehav Rev 27:671–682. doi:10.1016/j.neubiorev.2003.08.010

    Article  PubMed  CAS  Google Scholar 

  • Russell VA (2007) Neurobiology of animal models of attention-deficit hyperactivity disorder. J Neurosci Methods 161:185–198. doi:10.1016/j.jneumeth.2006.12.005

    Article  PubMed  Google Scholar 

  • Salazar P, Velasco-Velazquez MA, Velasco I (2008) GABA effects during neuronal differentiation of stem cells. Neurochem Res 33:1546–1557. doi:10.1007/s11064-008-9642-8

    Article  PubMed  CAS  Google Scholar 

  • Sved AF, Ito S, Sved JC (2003) Brainstem mechanisms of hypertension: role of the rostral ventrolateral medulla. Curr Hypertens Rep 5:262–268. doi:10.1007/s11906-003-0030-0

    Article  PubMed  Google Scholar 

  • Tamura K, Tanaka Y, Tsurumi Y, Azuma K, Shigenaga A, Wakui H, Masuda S, Matsuda M (2007) The role of angiotensin AT1 receptor-associated protein in renin-angiotensin system regulation and function. Curr Hypertens Rep 9:121–127. doi:10.1007/s11906-007-0022-6

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Tamura K, Koide Y, Sakai M, Tsurumi Y, Noda Y, Umemura M, Ishigami T, Uchino K, Kimura K, Horiuchi M, Umemura S (2005) The novel angiotensin II type 1 receptor (AT1R)-associated protein ATRAP downregulates AT1R and ameliorates cardiomyocyte hypertrophy. FEBS Lett 579:1579–1586. doi:10.1016/j.febslet.2005.01.068

    Article  PubMed  CAS  Google Scholar 

  • Terreberry RR, Neafsey EJ (1987) The rat medial frontal cortex projects directly to autonomic regions of the brainstem. Brain Res Bull 19:639–649. doi:10.1016/0361-9230(87)90050-5

    Article  PubMed  CAS  Google Scholar 

  • Terry AV Jr, Hernandez CM, Buccafusco JJ, Gattu M (2000) Deficits in spatial learning and nicotinic-acetylcholine receptors in older, spontaneously hypertensive rats. Neuroscience 101:357–368. doi:10.1016/S0306-4522(00)00377-8

    Article  PubMed  CAS  Google Scholar 

  • Tripodi G, Szpirer C, Reina C, Szpirer J, Bianchi G (1997) Polymorphism of gamma-adducin gene in genetic hypertension and mapping of the gene to rat chromosome 1q55. Biochem Biophys Res Commun 237:685–689. doi:10.1006/bbrc.1997.7173

    Article  PubMed  CAS  Google Scholar 

  • Tsuchihashi T, Liu Y, Kagiyama S, Matsumura K, Abe I, Fujishima M (2000) Metabotropic glutamate receptor subtypes involved in cardiovascular regulation in the rostral ventrolateral medulla of rats. Brain Res Bull 52:279–283. doi:10.1016/S0361-9230(00)00264-1

    Article  PubMed  CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121. doi:10.1073/pnas.091062498

    Article  PubMed  CAS  Google Scholar 

  • Waki H, Murphy D, Yao ST, Kasparov S, Paton JF (2006) Endothelial NO synthase activity in nucleus tractus solitarii contributes to hypertension in spontaneously hypertensive rats. Hypertension 48:644–650. doi:10.1161/01.HYP.0000238200.46085.c6

    Article  PubMed  CAS  Google Scholar 

  • Wu WC, Su CK, Yang CY, Chai CY (2003) The nNos/cGMP mediation of the depressor response to NMDA receptor stimulation in the caudal ventrolateral medulla. Chin J Physiol 46:175–179

    PubMed  CAS  Google Scholar 

  • Yang H, Reaves PY, Katovich MJ, Raizada MK (2004) Decrease in hypothalamic gamma adducin in rat models of hypertension. Hypertension 43:324–328. doi:10.1161/01.HYP.0000113045.12850.cd

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento e Tecnologia (CNPq). J. P.·P. Matsumoto received a mastering fellowship from Coordenação de aperfeiçoamento de pessoal de nível superior (CAPES). M. F. R. Ferrari received a post-doctoral fellowship from FAPESP (06/00650-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merari F. R. Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrari, M.F.R., Reis, E.M., Matsumoto, J.P.P. et al. Gene Expression Profiling of Cultured Cells From Brainstem of Newborn Spontaneously Hypertensive and Wistar Kyoto Rats. Cell Mol Neurobiol 29, 287–308 (2009). https://doi.org/10.1007/s10571-008-9321-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-008-9321-y

Keywords

Navigation