Skip to main content

Advertisement

Log in

GABA Effects During Neuronal Differentiation of Stem Cells

  • Review Article
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Gamma-amino butyrate (GABA) is the most prevalent inhibitory neurotransmitter in the adult brain. In this review, we summarize the pharmacology and regulation of GABAergic transmission components (biosynthetic enzymes, receptors and transporters) in adult non-neurogenic brain regions. The effects of targeted mutations in genes relevant for GABAergic functions and how they influence specific neuronal circuits and pathological states are presented. We then review GABA actions on neuronal differentiation. During brain development, GABA has depolarizing activity in cerebrocortical neural precursors, controlling cell division and contributing to neuronal migration and maturation. In the adult forebrain there are two neurogenic regions exposed to synaptic and non-synaptic GABA release. Neural stem cells and neuronal progenitors express GABA receptors in subventricular and subgranular zones. GABA effects in these cells are very similar to those found in embryonic cortical precursor cells, and therefore it is possible that this amino acid has important roles during adult brain plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bayon A, Possani LD, Tapia M et al (1977) Kinetics of brain glutamate decarboxylase. Interactions with glutamate, pyridoxal 5′-phosphate and glutamate-pyridoxal 5′-phosphate Schiff base. J Neurochem 29:519–525

    PubMed  CAS  Google Scholar 

  2. Covarrubias M, Tapia R (1980) Brain glutamate decarboxylase: properties of its calcium-dependent binding to liposomes and kinetics of the bound and the free enzyme. J Neurochem 34:1682–1688

    PubMed  CAS  Google Scholar 

  3. Erlander MG, Tobin AJ (1991) The structural and functional heterogeneity of glutamic acid decarboxylase: a review. Neurochem Res 16:215–226

    PubMed  CAS  Google Scholar 

  4. Kaufman DL, Houser CR, Tobin AJ (1991) Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J Neurochem 56:720–723

    PubMed  CAS  Google Scholar 

  5. Soghomonian JJ, Martin DL (1998) Two isoforms of glutamate decarboxylase: why? Trends Pharmacol Sci 19:500–505

    PubMed  CAS  Google Scholar 

  6. McIntire SL, Reimer RJ, Schuske K et al (1997) Identification and characterization of the vesicular GABA transporter. Nature 389:870–876

    PubMed  CAS  Google Scholar 

  7. Asada H, Kawamura Y, Maruyama K et al (1997) Cleft palate and decreased brain gamma-aminobutyric acid in mice lacking the 67-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci USA 94:6496–6499

    PubMed  CAS  Google Scholar 

  8. Kash SF, Johnson RS, Tecott LH et al (1997) Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci USA 94:14060–14065

    PubMed  CAS  Google Scholar 

  9. Asada H, Kawamura Y, Maruyama K et al (1996) Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures. Biochem Biophys Res Commun 229:891–895

    PubMed  CAS  Google Scholar 

  10. Kuwana S, Okada Y, Sugawara Y et al (2003) Disturbance of neural respiratory control in neonatal mice lacking GABA synthesizing enzyme 67-kDa isoform of glutamic acid decarboxylase. Neuroscience 120:861–870

    PubMed  CAS  Google Scholar 

  11. Fujii M, Arata A, Kanbara-Kume N et al (2007) Respiratory activity in brainstem of fetal mice lacking glutamate decarboxylase 65/67 and vesicular GABA transporter. Neuroscience 146:1044–1052

    PubMed  CAS  Google Scholar 

  12. Ji F, Kanbara N, Obata K (1999) GABA and histogenesis in fetal and neonatal mouse brain lacking both the isoforms of glutamic acid decarboxylase. Neurosci Res 33:187–194

    PubMed  CAS  Google Scholar 

  13. Chattopadhyaya B, Di Cristo G, Wu CZ et al (2007) GAD67-mediated GABA synthesis and signaling regulate inhibitory synaptic innervation in the visual cortex. Neuron 54:889–903

    PubMed  CAS  Google Scholar 

  14. Tapia R, Pasantes-Morales H, Taborda E et al (1975) Seizure susceptibility in the developing mouse and its relationship to glutamate decarboxylase and pyridoxal phosphate in brain. J Neurobiol 6:159–170

    PubMed  CAS  Google Scholar 

  15. Salazar P, Montiel T, Brailowsky S et al (1994) Decrease of glutamate decarboxylase activity after in vivo cortical infusion of gamma-aminobutyric acid. Neurochem Int 24:363–368

    PubMed  CAS  Google Scholar 

  16. Massieu L, Rivera A, Tapia R (1994) Convulsions and inhibition of glutamate decarboxylase by pyridoxal phosphate-gamma-glutamyl hydrazone in the developing rat. Neurochem Res 19:183–187

    PubMed  CAS  Google Scholar 

  17. Arias C, Valero H, Tapia R (1992) Inhibition of brain glutamate decarboxylase activity is related to febrile seizures in rat pups. J Neurochem 58:369–373

    PubMed  CAS  Google Scholar 

  18. Mohler H (2006) GABA(A) receptor diversity and pharmacology. Cell Tissue Res 326:505–516

    PubMed  CAS  Google Scholar 

  19. Benarroch EE (2007) GABAA receptor heterogeneity, function, and implications for epilepsy. Neurology 68:612–614

    PubMed  CAS  Google Scholar 

  20. Lujan R (2007) Subcellular regulation of metabotropic GABA receptors in the developing cerebellum. Cerebellum 6:123–129

    PubMed  CAS  Google Scholar 

  21. Macdonald RL, Olsen RW (1994) GABAA receptor channels. Annu Rev Neurosci 17:569–602

    PubMed  CAS  Google Scholar 

  22. Bormann J (1988) Electrophysiology of GABAA and GABAB receptor subtypes. Trends Neurosci 11:112–116

    PubMed  CAS  Google Scholar 

  23. Atack JR (2005) The benzodiazepine binding site of GABA(A) receptors as a target for the development of novel anxiolytics. Expert Opin Investig Drugs 14:601–618

    PubMed  CAS  Google Scholar 

  24. Banfi S, Cornelli U, Fonio W et al (1982) A screening method for substances potentially active on learning and memory. J Pharmacol Method 8:255–263

    CAS  Google Scholar 

  25. Macdonald RL, Kelly KM (1994) Mechanisms of action of currently prescribed and newly developed antiepileptic drugs. Epilepsia 35(Suppl 4):S41–50

    PubMed  Google Scholar 

  26. Pritchett DB, Luddens H, Seeburg PH (1989) Type I and type II GABAA-benzodiazepine receptors produced in transfected cells. Science 245:1389–1392

    PubMed  CAS  Google Scholar 

  27. Crestani F, Low K, Keist R et al (2001) Molecular targets for the myorelaxant action of diazepam. Mol Pharmacol 59:442–445

    PubMed  CAS  Google Scholar 

  28. Crestani F, Martin JR, Mohler H et al (2000) Mechanism of action of the hypnotic zolpidem in vivo. Br J Pharmacol 131:1251–1254

    PubMed  CAS  Google Scholar 

  29. Salazar P, Tapia R, Rogawski MA (2003) Effects of neurosteroids on epileptiform activity induced by picrotoxin and 4-aminopyridine in the rat hippocampal slice. Epilepsy Res 55:71–82

    PubMed  CAS  Google Scholar 

  30. Smith SS, Shen H, Gong QH et al (2007) Neurosteroid regulation of GABA(A) receptors: Focus on the alpha4 and delta subunits. Pharmacol Ther 116:58–76

    PubMed  CAS  Google Scholar 

  31. Drafts BC, Fisher JL (2006) Identification of structures within GABAA receptor alpha subunits that regulate the agonist action of pentobarbital. J Pharmacol Exp Ther 318:1094–1101

    PubMed  CAS  Google Scholar 

  32. Sur C, Wafford KA, Reynolds DS et al (2001) Loss of the major GABA(A) receptor subtype in the brain is not lethal in mice. J Neurosci 21:3409–3418

    PubMed  CAS  Google Scholar 

  33. Kralic JE, Korpi ER, O’Buckley TK et al (2002) Molecular and pharmacological characterization of GABA(A) receptor alpha1 subunit knockout mice. J Pharmacol Exp Ther 302:1037–1045

    PubMed  CAS  Google Scholar 

  34. Kralic JE, Wheeler M, Renzi K et al (2003) Deletion of GABAA receptor alpha 1 subunit-containing receptors alters responses to ethanol and other anesthetics. J Pharmacol Exp Ther 305:600–607

    PubMed  CAS  Google Scholar 

  35. Blednov YA, Walker D, Alva H et al (2003) GABAA receptor alpha 1 and beta 2 subunit null mutant mice: behavioral responses to ethanol. J Pharmacol Exp Ther 305:854–863

    PubMed  CAS  Google Scholar 

  36. Schneider Gasser EM, Duveau V, Prenosil GA et al (2007) Reorganization of GABAergic circuits maintains GABAA receptor-mediated transmission onto CA1 interneurons in alpha1-subunit-null mice. Eur J Neurosci 25:3287–3304

    PubMed  Google Scholar 

  37. Bosman LW, Rosahl TW, Brussaard AB (2002) Neonatal development of the rat visual cortex: synaptic function of GABAA receptor alpha subunits. J Physiol 545:169–181

    PubMed  CAS  Google Scholar 

  38. Fritschy JM, Panzanelli P (2006) Molecular and synaptic organization of GABAA receptors in the cerebellum: effects of targeted subunit gene deletions. Cerebellum 5:275–285

    PubMed  CAS  Google Scholar 

  39. Marder E, Goaillard JM (2006) Variability, compensation and homeostasis in neuron and network function. Nat Rev Neurosci 7:563–574

    PubMed  CAS  Google Scholar 

  40. Boehm SL II, Ponomarev I, Jennings AW et al (2004) gamma-Aminobutyric acid A receptor subunit mutant mice: new perspectives on alcohol actions. Biochem Pharmacol 68:1581–1602

    PubMed  CAS  Google Scholar 

  41. DeLorey TM, Handforth A, Anagnostaras SG et al (1998) Mice lacking the beta3 subunit of the GABAA receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome. J Neurosci 18:8505–8514

    PubMed  CAS  Google Scholar 

  42. Saitoh S, Kubota T, Ohta T et al (1992) Familial Angelman syndrome caused by imprinted submicroscopic deletion encompassing GABAA receptor beta 3-subunit gene. Lancet 339:366–367

    PubMed  CAS  Google Scholar 

  43. Wagstaff J, Knoll JH, Fleming J et al (1991) Localization of the gene encoding the GABAA receptor beta 3 subunit to the Angelman/Prader-Willi region of human chromosome 15. Am J Hum Genet 49:330–337

    PubMed  CAS  Google Scholar 

  44. Shao Y, Cuccaro ML, Hauser ER et al (2003) Fine mapping of autistic disorder to chromosome 15q11-q13 by use of phenotypic subtypes. Am J Hum Genet 72:539–548

    PubMed  CAS  Google Scholar 

  45. DeLorey TM (2005) GABRB3 gene deficient mice: a potential model of autism spectrum disorder. Int Rev Neurobiol 71:359–382

    PubMed  CAS  Google Scholar 

  46. Buxbaum JD, Silverman JM, Smith CJ et al (2002) Association between a GABRB3 polymorphism and autism. Mol Psychiatry 7:311–316

    PubMed  CAS  Google Scholar 

  47. Culiat CT, Stubbs LJ, Montgomery CS et al (1994) Phenotypic consequences of deletion of the gamma 3, alpha 5, or beta 3 subunit of the type A gamma-aminobutyric acid receptor in mice. Proc Natl Acad Sci USA 91:2815–2818

    PubMed  CAS  Google Scholar 

  48. Homanics GE, DeLorey TM, Firestone LL et al (1997) Mice devoid of gamma-aminobutyrate type A receptor beta3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc Natl Acad Sci USA 94:4143–4148

    PubMed  CAS  Google Scholar 

  49. Ramadan E, Fu Z, Losi G et al (2003) GABA(A) receptor beta3 subunit deletion decreases alpha2/3 subunits and IPSC duration. J Neurophysiol 89:128–134

    PubMed  CAS  Google Scholar 

  50. Wong SM, Cheng G, Homanics GE et al (2001) Enflurane actions on spinal cords from mice that lack the beta3 subunit of the GABA(A) receptor. Anesthesiology 95:154–164

    PubMed  CAS  Google Scholar 

  51. Ferguson C, Hardy SL, Werner DF et al (2007) New insight into the role of the beta3 subunit of the GABAA-R in development, behavior, body weight regulation, and anesthesia revealed by conditional gene knockout. BMC Neurosci 8:85

    PubMed  Google Scholar 

  52. Mihalek RM, Bowers BJ, Wehner JM et al (2001) GABA(A)-receptor delta subunit knockout mice have multiple defects in behavioral responses to ethanol. Alcohol Clin Exp Res 25:1708–1718

    PubMed  CAS  Google Scholar 

  53. Zhu WJ, Wang JF, Krueger KE et al (1996) Delta subunit inhibits neurosteroid modulation of GABAA receptors. J Neurosci 16:6648–6656

    PubMed  CAS  Google Scholar 

  54. Glykys J, Mody I (2007) The main source of ambient GABA responsible for tonic inhibition in the mouse hippocampus. J Physiol 582:1163–1178

    PubMed  CAS  Google Scholar 

  55. Kullmann DM, Ruiz A, Rusakov DM et al (2005) Presynaptic, extrasynaptic and axonal GABAA receptors in the CNS: where and why? Prog Biophys Mol Biol 87:33–46

    PubMed  CAS  Google Scholar 

  56. Wang CT, Blankenship AG, Anishchenko A et al (2007) GABA(A) receptor-mediated signaling alters the structure of spontaneous activity in the developing retina. J Neurosci 27:9130–9140

    PubMed  CAS  Google Scholar 

  57. MacDermott AB, Role LW, Siegelbaum SA (1999) Presynaptic ionotropic receptors and the control of transmitter release. Annu Rev Neurosci 22:443–485

    PubMed  CAS  Google Scholar 

  58. Bormann J (2000) The ‘ABC’ of GABA receptors. Trends Pharmacol Sci 21:16–19

    PubMed  CAS  Google Scholar 

  59. Bowery NG, Bettler B, Froestl W et al (2002) International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function. Pharmacol Rev 54:247–264

    PubMed  CAS  Google Scholar 

  60. Drake RG, Davis LL, Cates ME et al (2003) Baclofen treatment for chronic posttraumatic stress disorder. Ann Pharmacother 37:1177–1181

    PubMed  CAS  Google Scholar 

  61. Breslow MF, Fankhauser MP, Potter RL et al (1989) Role of gamma-aminobutyric acid in antipanic drug efficacy. Am J Psychiatry 146:353–356

    PubMed  CAS  Google Scholar 

  62. Urwyler S, Pozza MF, Lingenhoehl K et al (2003) N,N′-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) and structurally related compounds: novel allosteric enhancers of gamma-aminobutyric acidB receptor function. J Pharmacol Exp Ther 307:322–330

    PubMed  CAS  Google Scholar 

  63. Urwyler S, Mosbacher J, Lingenhoehl K et al (2001) Positive allosteric modulation of native and recombinant gamma-aminobutyric acid(B) receptors by 2,6-Di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and its aldehyde analog CGP13501. Mol Pharmacol 60:963–971

    PubMed  CAS  Google Scholar 

  64. Bowery NG (2006) GABAB receptor: a site of therapeutic benefit. Curr Opin Pharmacol 6:37–43

    PubMed  CAS  Google Scholar 

  65. Mombereau C, Kaupmann K, Froestl W et al (2004) Genetic and pharmacological evidence of a role for GABA(B) receptors in the modulation of anxiety- and antidepressant-like behavior. Neuropsychopharmacology 29:1050–1062

    PubMed  CAS  Google Scholar 

  66. Vigot R, Barbieri S, Brauner-Osborne H et al (2006) Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron 50:589–601

    PubMed  CAS  Google Scholar 

  67. Jacobson LH, Kelly PH, Bettler B et al (2007) Specific roles of GABA(B(1)) receptor isoforms in cognition. Behav Brain Res 181:158–162

    PubMed  CAS  Google Scholar 

  68. Jacobson LH, Kelly PH, Bettler B et al (2006) GABA(B(1)) receptor isoforms differentially mediate the acquisition and extinction of aversive taste memories. J Neurosci 26:8800–8803

    PubMed  CAS  Google Scholar 

  69. Zhang D, Pan ZH, Zhang X et al (1995) Cloning of a gamma-aminobutyric acid type C receptor subunit in rat retina with a methionine residue critical for picrotoxinin channel block. Proc Natl Acad Sci USA 92:11756–11760

    PubMed  CAS  Google Scholar 

  70. Feigenspan A, Bormann J (1998) GABA-gated Cl channels in the rat retina. Prog Retin Eye Res 17:99–126

    PubMed  CAS  Google Scholar 

  71. Chebib M, Mewett KN, Johnston GA (1998) GABA(C) receptor antagonists differentiate between human rho1 and rho2 receptors expressed in Xenopus oocytes. Eur J Pharmacol 357:227–234

    PubMed  CAS  Google Scholar 

  72. Kusama T, Spivak CE, Whiting P et al (1993) Pharmacology of GABA rho 1 and GABA alpha/beta receptors expressed in Xenopus oocytes and COS cells. Br J Pharmacol 109:200–206

    PubMed  CAS  Google Scholar 

  73. Bormann J, Feigenspan A (1995) GABAC receptors. Trends Neurosci 18:515–519

    PubMed  CAS  Google Scholar 

  74. Cutting GR, Lu L, O’Hara BF et al (1991) Cloning of the gamma-aminobutyric acid (GABA) rho 1 cDNA: a GABA receptor subunit highly expressed in the retina. Proc Natl Acad Sci USA 88:2673–2677

    PubMed  CAS  Google Scholar 

  75. McCall MA, Lukasiewicz PD, Gregg RG et al (2002) Elimination of the rho1 subunit abolishes GABA(C) receptor expression and alters visual processing in the mouse retina. J Neurosci 22:4163–4174

    PubMed  CAS  Google Scholar 

  76. Chen Y, Zhou D, Zhou K et al (2007) Study on olfactory function in GABA(C) receptor/channel rho(1) subunit knockout mice. Neurosci Lett 427:10–15

    PubMed  CAS  Google Scholar 

  77. Krogsgaard-Larsen P, Frolund B, Frydenvang K (2000) GABA uptake inhibitors. Design, molecular pharmacology and therapeutic aspects. Curr Pharm Des 6:1193–1209

    PubMed  CAS  Google Scholar 

  78. Borden LA (1996) GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 29:335–356

    PubMed  CAS  Google Scholar 

  79. Dhar TG, Borden LA, Tyagarajan S et al (1994) Design, synthesis and evaluation of substituted triarylnipecotic acid derivatives as GABA uptake inhibitors: identification of a ligand with moderate affinity and selectivity for the cloned human GABA transporter GAT-3. J Med Chem 37:2334–2342

    PubMed  CAS  Google Scholar 

  80. LaRoche SM (2007) A new look at the second-generation antiepileptic drugs: a decade of experience. Neurologist 13:133–139

    PubMed  Google Scholar 

  81. Crane D (2003) Tiagabine for the treatment of anxiety. Depress Anxiety 18:51–52

    PubMed  Google Scholar 

  82. Gadea A, Lopez-Colome AM (2001) Glial transporters for glutamate, glycine, and GABA: II. GABA transporters. J Neurosci Res 63:461–468

    PubMed  CAS  Google Scholar 

  83. Guastella J, Nelson N, Nelson H et al (1990) Cloning and expression of a rat brain GABA transporter. Science 249:1303–1306

    PubMed  CAS  Google Scholar 

  84. Schousboe A, Sarup A, Larsson OM et al (2004) GABA transporters as drug targets for modulation of GABAergic activity. Biochem Pharmacol 68:1557–1563

    PubMed  CAS  Google Scholar 

  85. Jensen K, Chiu CS, Sokolova I et al (2003) GABA transporter-1 (GAT1)-deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus. J Neurophysiol 90:2690–2701

    PubMed  CAS  Google Scholar 

  86. Chiu CS, Brickley S, Jensen K et al (2005) GABA transporter deficiency causes tremor, ataxia, nervousness, and increased GABA-induced tonic conductance in cerebellum. J Neurosci 25:3234–3245

    PubMed  CAS  Google Scholar 

  87. Cai YQ, Cai GQ, Liu GX et al (2006) Mice with genetically altered GABA transporter subtype I (GAT1) expression show altered behavioral responses to ethanol. J Neurosci Res 84:255–267

    PubMed  CAS  Google Scholar 

  88. Liu GX, Cai GQ, Cai YQ et al (2007) Reduced anxiety and depression-like behaviors in mice lacking GABA transporter subtype 1. Neuropsychopharmacology 32:1531–1539

    PubMed  CAS  Google Scholar 

  89. Conti F, Minelli A, Melone M (2004) GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications. Brain Res Brain Res Rev 45:196–212

    PubMed  CAS  Google Scholar 

  90. Evans JE, Frostholm A, Rotter A (1996) Embryonic and postnatal expression of four gamma-aminobutyric acid transporter mRNAs in the mouse brain and leptomeninges. J Comp Neurol 376:431–446

    PubMed  CAS  Google Scholar 

  91. Minelli A, Barbaresi P, Conti F (2003) Postnatal development of high-affinity plasma membrane GABA transporters GAT-2 and GAT-3 in the rat cerebral cortex. Brain Res Dev Brain Res 142:7–18

    PubMed  CAS  Google Scholar 

  92. Velasco I, Tapia R (2002) High extracellular gamma-aminobutyric acid protects cultured neurons against damage induced by the accumulation of endogenous extracellular glutamate. J Neurosci Res 67:406–410

    Google Scholar 

  93. Tillakaratne NJ, Medina-Kauwe L, Gibson KM (1995) gamma-Aminobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues. Comp Biochem Physiol A Physiol 112:247–263

    PubMed  CAS  Google Scholar 

  94. Salazar P, del Carmen Sanchez-Soto M, Hiriart M et al (2001) Biochemical characteristics of the gamma-aminobutyric acid system in the insulinoma cell lines HIT-T15, RIN-m5F, betaTC3, and comparison with rat brain. Arch Med Res 32:419–428

    PubMed  CAS  Google Scholar 

  95. Gammelsaeter R, Froyland M, Aragon C et al (2004) Glycine, GABA and their transporters in pancreatic islets of Langerhans: evidence for a paracrine transmitter interplay. J Cell Sci 117:3749–3758

    PubMed  CAS  Google Scholar 

  96. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    PubMed  CAS  Google Scholar 

  97. McKay R (1997) Stem cells in the central nervous system. Science 276:66–71

    PubMed  CAS  Google Scholar 

  98. Rakic P (2006) A century of progress in corticoneurogenesis: from silver impregnation to genetic engineering. Cereb Cortex 16(Suppl 1):13–17

    Google Scholar 

  99. Metin C, Baudoin JP, Rakic S et al (2006) Cell and molecular mechanisms involved in the migration of cortical interneurons. Eur J Neurosci 23:894–900

    PubMed  Google Scholar 

  100. Noctor SC, Flint AC, Weissman TA et al (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720

    PubMed  CAS  Google Scholar 

  101. Noctor SC, Flint AC, Weissman TA et al (2002) Dividing precursor cells of the embryonic cortical ventricular zone have morphological and molecular characteristics of radial glia. J Neurosci 22:3161–3173

    PubMed  CAS  Google Scholar 

  102. Ang ES Jr, Haydar TF, Gluncic V et al (2003) Four-dimensional migratory coordinates of GABAergic interneurons in the developing mouse cortex. J Neurosci 23:5805–5815

    PubMed  CAS  Google Scholar 

  103. Lopez-Bendito G, Sturgess K, Erdelyi F et al (2004) Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb Cortex 14:1122–1133

    PubMed  Google Scholar 

  104. Haydar TF, Wang F, Schwartz ML et al (2000) Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci 20:5764–5774

    PubMed  CAS  Google Scholar 

  105. Tamamaki N, Yanagawa Y, Tomioka R et al (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467:60–79

    PubMed  CAS  Google Scholar 

  106. Jursky F, Nelson N (1996) Developmental expression of GABA transporters GAT1 and GAT4 suggests involvement in brain maturation. J Neurochem 67:857–867

    Article  PubMed  CAS  Google Scholar 

  107. Taylor J, Docherty M, Gordon-Weeks PR (1990) GABAergic growth cones: release of endogenous gamma-aminobutyric acid precedes the expression of synaptic vesicle antigens. J Neurochem 54:1689–1699

    PubMed  CAS  Google Scholar 

  108. Taylor J, Gordon-Weeks PR (1991) Calcium-independent gamma-aminobutyric acid release from growth cones: role of gamma-aminobutyric acid transport. J Neurochem 56:273–280

    PubMed  CAS  Google Scholar 

  109. Fritschy JM, Paysan J, Enna A et al (1994) Switch in the expression of rat GABAA-receptor subtypes during postnatal development: an immunohistochemical study. J Neurosci 14:5302–5324

    PubMed  CAS  Google Scholar 

  110. Laurie DJ, Wisden W, Seeburg PH (1992) The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci 12:4151–4172

    PubMed  CAS  Google Scholar 

  111. LoTurco JJ, Owens DF, Heath MJ et al (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287–1298

    PubMed  CAS  Google Scholar 

  112. Antonopoulos J, Pappas IS, Parnavelas JG (1997) Activation of the GABAA receptor inhibits the proliferative effects of bFGF in cortical progenitor cells. Eur J Neurosci 9:291–298

    PubMed  CAS  Google Scholar 

  113. Owens DF, Boyce LH, Davis MB et al (1996) Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J Neurosci 16:6414–6423

    PubMed  CAS  Google Scholar 

  114. Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3:715–727

    PubMed  CAS  Google Scholar 

  115. Rivera C, Voipio J, Payne JA et al (1999) The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255

    PubMed  CAS  Google Scholar 

  116. Cancedda L, Fiumelli H, Chen K et al (2007) Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo. J Neurosci 27:5224–5235

    PubMed  CAS  Google Scholar 

  117. Maric D, Liu QY, Maric I et al (2001) GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABA(A) autoreceptor/Cl channels. J Neurosci 21:2343–2360

    PubMed  CAS  Google Scholar 

  118. Cobos I, Calcagnotto ME, Vilaythong AJ et al (2005) Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat Neurosci 8:1059–1068

    PubMed  CAS  Google Scholar 

  119. Behar TN, Li YX, Tran HT et al (1996) GABA stimulates chemotaxis and chemokinesis of embryonic cortical neurons via calcium-dependent mechanisms. J Neurosci 16:1808–1818

    PubMed  CAS  Google Scholar 

  120. Behar TN, Schaffner AE, Scott CA et al (2000) GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cereb Cortex 10:899–909

    PubMed  CAS  Google Scholar 

  121. Heck N, Kilb W, Reiprich P et al (2007) GABA-A receptors regulate neocortical neuronal migration in vitro and in vivo. Cereb Cortex 17:138–148

    PubMed  Google Scholar 

  122. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    PubMed  CAS  Google Scholar 

  123. Lois C, Alvarez-Buylla A (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264:1145–1148

    PubMed  CAS  Google Scholar 

  124. Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189

    PubMed  CAS  Google Scholar 

  125. Doetsch F, Caille I, Lim DA et al (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97:703–716

    PubMed  CAS  Google Scholar 

  126. Tramontin AD, Garcia-Verdugo JM, Lim DA et al (2003) Postnatal development of radial glia and the ventricular zone (VZ): a continuum of the neural stem cell compartment. Cereb Cortex 13:580–587

    PubMed  Google Scholar 

  127. Wichterle H, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Direct evidence for homotypic, glia-independent neuronal migration. Neuron 18:779–791

    PubMed  CAS  Google Scholar 

  128. Gleeson JG, Lin PT, Flanagan LA et al (1999) Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23:257–271

    PubMed  CAS  Google Scholar 

  129. Leker RR, Soldner F, Velasco I et al (2007) Long-lasting regeneration after ischemia in the cerebral cortex. Stroke 38:153–161

    PubMed  Google Scholar 

  130. Wang DD, Krueger DD, Bordey A (2003) GABA depolarizes neuronal progenitors of the postnatal subventricular zone via GABAA receptor activation. J Physiol 550:785–800

    PubMed  CAS  Google Scholar 

  131. Stewart RR, Hoge GJ, Zigova T et al (2002) Neural progenitor cells of the neonatal rat anterior subventricular zone express functional GABA(A) receptors. J Neurobiol 50:305–322

    PubMed  CAS  Google Scholar 

  132. Nguyen L, Malgrange B, Breuskin I et al (2003) Autocrine/paracrine activation of the GABA(A) receptor inhibits the proliferation of neurogenic polysialylated neural cell adhesion molecule-positive (PSA-NCAM+) precursor cells from postnatal striatum. J Neurosci 23:3278–3294

    PubMed  CAS  Google Scholar 

  133. Bolteus AJ, Bordey A (2004) GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone. J Neurosci 24:7623–7631

    PubMed  CAS  Google Scholar 

  134. Liu X, Wang Q, Haydar TF et al (2005) Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat Neurosci 8:1179–1187

    PubMed  CAS  Google Scholar 

  135. Seri B, Garcia-Verdugo JM, McEwen BS et al (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160

    PubMed  CAS  Google Scholar 

  136. Christie BR, Cameron HA (2006) Neurogenesis in the adult hippocampus. Hippocampus 16:199–207

    PubMed  CAS  Google Scholar 

  137. Eriksson PS, Perfilieva E, Bjork-Eriksson T et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    PubMed  CAS  Google Scholar 

  138. Schinder AF, Gage FH (2004) A hypothesis about the role of adult neurogenesis in hippocampal function. Physiology (Bethesda) 19:253–261

    Google Scholar 

  139. Aimone JB, Wiles J, Gage FH (2006) Potential role for adult neurogenesis in the encoding of time in new memories. Nat Neurosci 9:723–727

    PubMed  CAS  Google Scholar 

  140. Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417

    PubMed  CAS  Google Scholar 

  141. Nakatomi H, Kuriu T, Okabe S et al (2002) Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110:429–441

    PubMed  CAS  Google Scholar 

  142. Cameron HA, McKay RD (1999) Restoring production of hippocampal neurons in old age. Nat Neurosci 2:894–897

    PubMed  CAS  Google Scholar 

  143. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495

    PubMed  CAS  Google Scholar 

  144. Kuwabara T, Hsieh J, Nakashima K et al (2004) A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116:779–793

    PubMed  CAS  Google Scholar 

  145. van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    PubMed  Google Scholar 

  146. Tozuka Y, Fukuda S, Namba T et al (2005) GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47:803–815

    PubMed  CAS  Google Scholar 

  147. Wang LP, Kempermann G, Kettenmann H (2005) A subpopulation of precursor cells in the mouse dentate gyrus receives synaptic GABAergic input. Mol Cell Neurosci 29:181–189

    PubMed  CAS  Google Scholar 

  148. Karten YJ, Jones MA, Jeurling SI et al (2006) GABAergic signaling in young granule cells in the adult rat and mouse dentate gyrus. Hippocampus 16:312–320

    PubMed  CAS  Google Scholar 

  149. Overstreet Wadiche L, Bromberg DA, Bensen AL et al (2005) GABAergic signaling to newborn neurons in dentate gyrus. J Neurophysiol 94:4528–4532

    PubMed  Google Scholar 

  150. Laplagne DA, Kamienkowski JE, Esposito MS et al (2007) Similar GABAergic inputs in dentate granule cells born during embryonic and adult neurogenesis. Eur J Neurosci 25:2973–2981

    PubMed  Google Scholar 

  151. Ge S, Goh EL, Sailor KA et al (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439:589–593

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our laboratories are supported by grants from PAPIIT of Universidad Nacional Autónoma de México, Conacyt (M.A.V-V. and I.V.), National Institute for Neurological Disorders and Stroke, Fundación Alemán and TWAS (I.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván Velasco.

Additional information

Special issue article in honor of Dr. Ricardo Tapia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar, P., Velasco-Velázquez, M.A. & Velasco, I. GABA Effects During Neuronal Differentiation of Stem Cells. Neurochem Res 33, 1546–1557 (2008). https://doi.org/10.1007/s11064-008-9642-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9642-8

Keywords

Navigation