Skip to main content
Log in

The role of angiotensin AT1 receptor-associated protein in renin-angiotensin system regulation and function

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

We cloned a novel molecule, AT1 receptor-associated protein (ATRAP), which is expressed in many tissues but specifically interacts with the AT1 receptor carboxylterminal. In the kidney, ATRAP was broadly distributed along the renal tubules; salt intake modulated its expression. In cardiovascular cells, angiotensin II (Ang II) stimulation made ATRAP co-localized with AT1 receptor in cytoplasm; ATRAP overexpression decreased cell surface AT1 receptor. In downstream signaling pathways, ATRAP suppressed Ang II-induced phosphorylation of mitogen-activated protein kinase, activation of c-fos gene transcription, and enhancement of amino acid or bromodeoxyuridine incorporation in cardiovascular cells. Thus, cardiovascular ATRAP may promote AT1 receptor internalization and attenuate Ang II-mediated cardiovascular remodeling. We would expect ATRAP to become a new therapeutic target molecule to treat and prevent cardiovascular remodeling in hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Chobanian AV, Alexander RW: Exacerbation of atherosclerosis by hypertension. Potential mechanisms and clinical implications. Arch Intern Med 1996, 156:1952–1956.

    Article  PubMed  CAS  Google Scholar 

  2. Tunon J, Ruiz-Ortega M, Egido J: Regulation of matrix proteins and impact on vascular structure. Curr Hypertens Rep 2000, 2:106–113.

    PubMed  CAS  Google Scholar 

  3. Dazu VJ, Braun-Dullaeus RC, Sedding DG: Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med 2002, 8:1249–1256.

    Article  CAS  Google Scholar 

  4. Dzau VJ: Tissue renin-angiotensin system in myocardial hypertrophy and failure. Arch Intern Med 1993, 153:937–942.

    Article  PubMed  CAS  Google Scholar 

  5. Kim S, Iwao H: Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 2000, 52:11–34.

    PubMed  CAS  Google Scholar 

  6. Ruiz-Ortega M, Ruperez M, Esteban V, et al.: Molecular mechanisms of angiotensin II-induced vascular injury. Curr Hypertens Rep 2003, 5:73–79.

    PubMed  Google Scholar 

  7. Mehta PK, Griendling KK: Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 2007, 292:C82–97.

    Article  PubMed  CAS  Google Scholar 

  8. Tamura K, Umemura S, Nyui N, et al.: Activation of angiotensinogen gene in cardiac myocytes by angiotensin II and mechanical stretch. Am J Physiol 1998, 275:R1–R9.

    PubMed  CAS  Google Scholar 

  9. Tamura K, Nyui N, Tamura N, et al.: Mechanism of angiotensin II-mediated regulation of fibronectin gene in rat vascular smooth muscle cells. J Biol Chem 1998, 273:26487–26496.

    Article  PubMed  CAS  Google Scholar 

  10. Tamura K, Chen YE, Lopez-Ilasaca M, et al.: Molecular mechanism of fibronectin gene activation by cyclic stretch in vascular smooth muscle cells. J Biol Chem 2000, 275:34619–34627.

    Article  PubMed  CAS  Google Scholar 

  11. Nyui N, Tamura K, Mizuno K, et al.: Stretch-induced MAP kinase activation in cardiomyocytes of angiotensinogen-deficient mice. Biochem Biophys Res Commun 1997, 235:36–41.

    Article  PubMed  CAS  Google Scholar 

  12. Nyui N, Tamura K, Mizuno K, et al.: gp130 is involved in stretch-induced MAP kinase activation in cardiac myocytes. Biochem Biophys Res Commun 1998, 245:928–932.

    Article  PubMed  CAS  Google Scholar 

  13. Baker KM, Chernin MI, Wixson SK, et al.: Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol 1990, 259:H324–H332.

    PubMed  CAS  Google Scholar 

  14. Schunkert H, Dzau VJ, Tang SS, et al.: Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J Clin Invest 1990, 86:1913–1920.

    Article  PubMed  CAS  Google Scholar 

  15. Rakugi H, Jacob HJ, Krieger JE, et al.: Vascular injury induces angiotensinogen gene expression in the media and neointima. Circulation 1993, 87:283–290.

    PubMed  CAS  Google Scholar 

  16. Tamura K, Umemura S, Nyui N, et al.: Tissue-specific regulation of angiotensinogen gene expression in spontaneously hypertensive rats. Hypertension 1996, 27:1216–1223.

    PubMed  CAS  Google Scholar 

  17. Tamura K, Umemura S, Yamakawa T, et al.: Modulation of tissue angiotensinogen gene expression in genetically obese hypertensive rats. Am J Physiol 1997, 272:R1704–R1711.

    PubMed  CAS  Google Scholar 

  18. Tamura K, Chiba E, Yokoyama N, et al.: Renin-angiotensin system and fibronectin gene expression in Dahl Iwai salt-sensitive and salt-resistant rats. J Hypertens 1999, 17:81–89.

    Article  PubMed  CAS  Google Scholar 

  19. Cohn JN, Tognoni G, for the Valsartan Heart Failure Trial Investigators: A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 2001, 345:1667–1675.

    Article  PubMed  CAS  Google Scholar 

  20. Dahlof B, Devereux RB, Kjeldsen SE, et al.: Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002, 359:995–1003.

    Article  PubMed  CAS  Google Scholar 

  21. Pfeffer MA, Swedberg K, Granger CB, et al.: Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet 2003, 362:759–766.

    Article  PubMed  CAS  Google Scholar 

  22. Navar LG, Kobori H, Prieto-Carrasquero M: Intrarenal angiotensin II and hypertension. Curr Hypertens Rep 2003, 5:135–143.

    PubMed  Google Scholar 

  23. Dzau VJ, Lopez-Ilasaca M: Searching for transcriptional regulators for Ang II-induced vascular pathology. J Clin Invest 2005, 115:2319–2322.

    Article  PubMed  CAS  Google Scholar 

  24. Ruiz-Ortega M, Esteban V, Ruperez M, et al.: Renal and vascular hypertension-induced inflammation: role of angiotensin II. Curr Opin Nephrol Hypertens 2006, 15:159–166.

    Article  PubMed  CAS  Google Scholar 

  25. Horiuchi M, Akishita M, Dzau VJ: Recent progress in angiotensin II type 2 receptor research in the cardiovascular system. Hypertension 1999, 33:613–621.

    PubMed  CAS  Google Scholar 

  26. Carey RM: Cardiovascular and renal regulation by the angiotensin type 2 receptor: the AT2 receptor comes of age. Hypertension 2005, 45:840–844.

    Article  PubMed  CAS  Google Scholar 

  27. Inagami T: Molecular biology and signaling of angiotensin receptors: an overview. J Am Soc Nephrol 1999, 10:S2–S7.

    PubMed  CAS  Google Scholar 

  28. Miura S, Saku K, Karnik SS: Molecular analysis of the structure and function of the angiotensin II type 1 receptor. Hypertens Res 2003, 26:937–943.

    Article  PubMed  CAS  Google Scholar 

  29. Gaborik Z, Hunyady L: Intracellular trafficking of hormone receptors. Trends Endocrinol Metab 2004, 15:286–293.

    Article  PubMed  CAS  Google Scholar 

  30. Hunyady L: Molecular mechanisms of angiotensin II receptor internalization. J Am Soc Nephrol 1999, 10:S47–S56.

    Article  PubMed  CAS  Google Scholar 

  31. Ushio-Fukai M, Alexander RW: Caveolin-dependent angiotensin II type 1 receptor signaling in vascular smooth muscle. Hypertension 2006, 48:797–803.

    Article  PubMed  CAS  Google Scholar 

  32. Hein L, Meinel L, Pratt RE, et al.: Intracellular trafficking of angiotensin II and its AT1 and AT2 receptors: evidence for selective sorting of receptor and ligand. Mol Endocrinol 1997, 11:1266–1277.

    Article  PubMed  CAS  Google Scholar 

  33. Ohtsu H, Suzuki H, Nakashima H, et al.: Angiotensin II signal transduction through small GTP-binding proteins: mechanism and significance in vascular smooth muscle cells. Hypertension 2006, 48:534–540.

    Article  PubMed  CAS  Google Scholar 

  34. Daviet L, Lehtonen JY, Tamura K, et al.: Cloning and characterization of ATRAP, a novel protein that interacts with the angiotensin II type 1 receptor. J Biol Chem 1999, 274:17058–17062.

    Article  PubMed  CAS  Google Scholar 

  35. Cui T, Nakagami H, Iwai M, et al.: ATRAP, novel AT1 receptor associated protein, enhances internalization of AT1 receptor and inhibits vascular smooth muscle cell growth. Biochem Biophys Res Commun 2000, 279:938–941.

    Article  PubMed  CAS  Google Scholar 

  36. Lopez-Ilasaca M, Liu X, Tamura K, et al.: The angiotensin II type I receptor-associated protein, ATRAP, is a transmembrane protein and a modulator of angiotensin II signaling. Mol Biol Cell 2003, 14:5038–5050.

    Article  PubMed  CAS  Google Scholar 

  37. Tsurumi Y, Tamura K, Tanaka Y, et al.: Interacting molecule of AT1 receptor, ATRAP, is co-localized with AT1 receptor in the mouse renal tubules. Kidney Int 2006, 69:488–494.

    Article  PubMed  CAS  Google Scholar 

  38. Guo S, Lopez-Ilasaca M, Dzau VJ: Identification of calcium-modulating cyclophilin ligand (CAML) as transducer of angiotensin II-mediated nuclear factor of activated T cells (NFAT) activation. J Biol Chem 2005, 280:12536–12541.

    Article  PubMed  CAS  Google Scholar 

  39. Tanaka Y, Tamura K, Koide Y, et al.: The novel angiotensin II type 1 receptor (AT1R)-associated protein ATRAP downregulates AT1R and ameliorates cardiomyocyte hypertrophy. FEBS Lett 2005, 579:1579–1586.

    Article  PubMed  CAS  Google Scholar 

  40. Azuma K, Tamura K, Sakai M, et al.: A novel regulatory effect of AT1 receptor-interacting molecule vascular smooth muscle cells. Hypertension 2006:48:e27.

    Article  CAS  Google Scholar 

  41. Rodriguez-Vita J, Sanchez-Lopez E, Esteban V, et al.: Angiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism. Circulation 2005, 111:2509–2517.

    Article  PubMed  CAS  Google Scholar 

  42. Border WA, Noble NA: Interactions of transforming growth factor-beta and angiotensin II in renal fibrosis. Hypertension 1998, 31:181–188.

    PubMed  CAS  Google Scholar 

  43. Zacchigna L, Vecchione C, Notte A, et al.: Emilin1 links TGF-beta maturation to blood pressure homeostasis. Cell 2006, 124:929–942.

    Article  PubMed  CAS  Google Scholar 

  44. August P, Suthanthiran M: Transforming growth factor beta signaling, vascular remodeling, and hypertension. N Engl J Med 2006, 354:2721–2723.

    Article  PubMed  CAS  Google Scholar 

  45. Oshita A, Iwai M, Chen R, et al.: Attenuation of inflammatory vascular remodeling by angiotensin II type 1 receptor-associated protein. Hypertension 2006, 48:671–676.

    Article  PubMed  CAS  Google Scholar 

  46. Guo DF, Tardif V, Ghelima K, et al.: A novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in rat vascular smooth muscle and renal proximal tubular cells. J Biol Chem 2004, 279:21109–21120.

    Article  PubMed  CAS  Google Scholar 

  47. Ushio-Fukai M, Zuo L, Ikeda S, et al.: cAbl tyrosine kinase mediates reactive oxygen species-and caveolin-dependent AT1 receptor signaling in vascular smooth muscle: role in vascular hypertrophy. Circ Res 2005, 97:829–836.

    Article  PubMed  CAS  Google Scholar 

  48. Guo DF, Chenier I, Lavoie JL, et al.: Development of hypertension and kidney hypertrophy in transgenic mice overexpressing ARAP1 gene in the kidney. Hypertension 2006, 48:453–459.

    Article  PubMed  CAS  Google Scholar 

  49. Zou Y, Akazawa H, Qin Y, et al.: Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 2004, 6:499–506.

    Article  PubMed  CAS  Google Scholar 

  50. Miura S, Fujino M, Hanzawa H, et al.: Molecular mechanism underlying inverse agonist of angiotensin II type 1 receptor. J Biol Chem 2006, 281:19288–19295.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouichi Tamura MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamura, K., Tanaka, Y., Tsurumi, Y. et al. The role of angiotensin AT1 receptor-associated protein in renin-angiotensin system regulation and function. Current Science Inc 9, 121–127 (2007). https://doi.org/10.1007/s11906-007-0022-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-007-0022-6

Keywords

Navigation