Skip to main content
Log in

Green fabrication of transparent Copper(II)-imidazolate metal–organic framework/cellulose nanocomposite films for antibacterial and UV-shielding applications

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The combination of two or more seemingly different features into a unique composite is an exciting direction for the preparation of novel versatile materials. Here, we report a facile and green strategy to fabricate transparent multifunctional cellulose-based film material. With carboxymethylated cellulose hydrogel as supporting medium and carboxyl groups as reactive sites, a type of antibacterial, biodegradable and UV-blocking nanocomposite films were fabricated by in situ synthesis of copper(II)-imidazolate metal–organic framework (Cu-MOF). The results show that the nanocomposite films possessed remarkable UV-blocking capability through the whole UV region meanwhile retaining high transmittance. Due to the weak photocatalytic effect of Cu-MOF, the nanocomposite films exhibit high photostability even after continuous UV irradiation (365 nm) for 12 h while maintaining their good mechanical strength. Quite encouragingly, Cu-MOF endowed the film with desirable antibacterial ability, and the antibacterial mechanism could be explained by the release of metal ions and ligands from Cu-MOF. Moreover, the incorporation of Cu-MOF can enhance the mechanical strength of the nanocomposite films. Therefore, the nanocomposite films have great potential for UV protection and transparent antimicrobial packaging applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abbas A, Bapan A, Taruna B, Samrat M (2020) Green solvent processed cellulose/graphene oxide nanocomposite films with superior mechanical, thermal, and ultraviolet shielding properties. ACS Appl Mater Inter 12(1):1687–1697

    Article  Google Scholar 

  • Adak B, Joshi M (2018) Coated or laminated textiles for aerostat and stratospheric airship. Wiley-Scrivener Publishing, Austin

    Book  Google Scholar 

  • Arul C, Moulaee K, Donato N, Iannazzo D, Lavanya N, Neri G, Sekar C (2021) Temperature modulated Cu-MOF based gas sensor with dual selectivity to acetone and NO2 at low operating temperatures. Sensors and Actuators BChem 329:129053

    Article  CAS  Google Scholar 

  • Chen K, Yu J, Huang J, Tang Q, Li H, Zou Z (2021) Improved mechanical, water vapor barrier and UV-shielding properties of cellulose acetate films with flower-like metal-organic framework nanoparticles. Int J Biol Macromol 167(15):1–9

    Article  CAS  PubMed  Google Scholar 

  • Cheung YH, Ma K, Wasson MC, Wang X, Idrees KB, Islamoglu T, Mahle J, Peterson GW, Xin JH, Farha OK (2022) Environmentally benign biosynthesis of hierarchical MOF/bacterial cellulose composite sponge for nerve agent protection. Angew Chem Int Ed 61(19):e202202207

    Article  CAS  Google Scholar 

  • Corrêa BA, Gonçalves AS, de Souza AM, Freitas CA, Cabral LM, Albuquerque MG, Castro HC, dos Santos EP, Rodrigues CR (2012) Molecular modeling studies of the structural, electronic, and UV absorption properties of benzophenone derivatives. J Phys Chem A 116(45):10927–10933

    Article  PubMed  Google Scholar 

  • Emam HE, Abdelhameed RM (2017) Anti-UV radiation textiles designed by embracing with nano-MIL(Ti, In)–metal organic framework. ACS Appl Mater Inter 9(33):28034–28045

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896

    Article  CAS  Google Scholar 

  • French AD (2017) Glucose, not cellobiose, is the repeating unit of cellulose and why that is important. Cellulose 24:4605–4609

    Article  CAS  Google Scholar 

  • Fu F, Gu J, Cao J, Shen R, Liu H, Zhang Y, Liu X, Zhou J (2018) Reduction of silver ions using an alkaline cellulose dope: straightforward access to Ag/ZnO decorated cellulose nanocomposite film with enhanced antibacterial activities. ACS Sustain Chem Eng 6(1):738–748

    Article  CAS  Google Scholar 

  • Gu R, Yun H, Chen L, Wang Q, Huang X (2019) Regenerated cellulose films with amino-terminated hyperbranched polyamic anchored nanosilver for active food packaging. ACS Appl Bio Mater 3(1):602–610

    Article  PubMed  Google Scholar 

  • Haendel S, Rodriguez P, Ochoa-Puentes C, Sierra C, Soto C (2014) Antibacterial activity against E. coil of Cu-BTC (MOF-199) metal–organic framework immobilized onto cellulosic fibers. J Appl Polym Sci 131(19):40815–40820

    Google Scholar 

  • He M, Xu M, Zhang L (2013) Controllable stearic acid crystal induced high hydrophobicity on cellulose film surface. ACS Appl Mater Inter 5(3):585–591

    Article  CAS  Google Scholar 

  • Im YM, Oh TH, Nathanael JA, Jang SS (2015) Effect of ZnO nanoparticles morphology on UV blocking of poly (vinyl alcohol)/ZnO composite nanofibers. Mater Lett 147:20–24

    Article  CAS  Google Scholar 

  • Jiang Y, Wang Z, Liu X, Yang Q, Huang Q, Wang L, Dai Y, Qin C, Wang S (2020) Highly transparent, UV-shielding, and water-resistant lignocellulose nanopaper from agro-industrial waste for green optoelectronics. ACS Sustain Chem Eng 8(47):17508–17519

    Article  CAS  Google Scholar 

  • Li GP, Cao F, Zhang K, Hou L, Gao RC, Zhang WY, Wang YY (2020a) Design of anti-UV radiation textiles with self-assembled metal–organic framework coating. Adv Mater Inter 7(1):1901525

    Article  CAS  Google Scholar 

  • Li Z, Hori N, Takemura A (2020b) A comparative study of depositing Cu-BTC metal–organic framework onto cellulosic filter paper via different procedures. Cellulose 27(11):6537–6547

    Article  CAS  Google Scholar 

  • Li Z, Hori N, Takemura A (2020c) Synthesis and characterization of Cu-BTC metal–organic frameworks onto lignocellulosic fibers by layer-by-layer method in aqueous solution. Cellulose 27(3):1733–1744

    Article  CAS  Google Scholar 

  • Li X, Li H, Wang X, Xu D, You T, Wu Y, Xu F (2021a) Facile in situ fabrication of ZnO-embedded cellulose nanocomposite films with antibacterial properties and enhanced mechanical strength via hydrogen bonding interactions. Int J Biol Macromol 183:760–771

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wang R, Wang G-E, Feng S, Shi W, Cheng Y, Shi L, Fu K, Sun J (2021b) Mutually noninterfering flexible pressure–temperature dual-modal sensors based on conductive metal–organic framework for electronic skin. ACS Nano 16(1):473–484

    Article  PubMed  Google Scholar 

  • Liu J, Wu D, Zhu N, Wu Y, Li G (2021) Antibacterial mechanisms and applications of metal-organic frameworks and their derived nanomaterials. Trends Food Sci Technol 109:413–434

    Article  CAS  Google Scholar 

  • Lu X, Ye J, Zhang D et al (2014) Silver carboxylate metal–organic frameworks with highly antibacterial activity and biocompatibility. J Inorg Biochem 138:114–121

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Hu C, Zhu Y, Zhang H, Li R, Xing Y (2018) Multi-functional finishing of cotton fabrics by water-based layer-by-layer assembly of metal–organic framework. Cellulose 25(7):4223–4238

    Article  CAS  Google Scholar 

  • Mazioti AA, Stasinakis AS, Psoma AK, Thomaidis NS, Andersen HR (2017) Hybrid moving bed biofilm reactor for the biodegradation of benzotriazoles and hydroxy-benzothiazole in wastewater. J Hazard Mater 323:299–310

    Article  CAS  PubMed  Google Scholar 

  • Mendoza DJ, Browne C, Raghuwanshi VS, Mouterde LM, Simon GP, Allais F, Garnier G (2021) Phenolic ester-decorated cellulose nanocrystals as UV-absorbing nanoreinforcements in polyvinyl alcohol films. ACS Sustain Chem Eng 9(18):6427–6437

    Article  CAS  Google Scholar 

  • Navarro P, Ester P, Pablo T, Ana AV, Patricia H, Beatriz P, Pablo DP (2018) Aqueous synthesis of copper(II)-imidazolate nanoparticles. Inorg Chem 57:12056–12065. https://doi.org/10.1021/acs.inorgchem.8b01612

    Article  CAS  Google Scholar 

  • Nowicki M, Richter A, Wolf B, Kaczmarek H (2003) Nanoscale mechanical properties of polymers irradiated by UV. Polymer 44(21):6599–6606

    Article  CAS  Google Scholar 

  • Pal S, Su Y-Z, Chen Y-W, Yu C-H, Kung C-W, Yu S-S (2022) 3D printing of metal–organic framework-Based ionogels: wearable sensors with colorimetric and mechanical responses. ACS Appl Mater Inter 14(24):28247–28257

    Article  CAS  Google Scholar 

  • Peydayesh M, Bagnani M, Mezzenga R (2021) Sustainable bioplastics from amyloid fibril-biodegradable polymer blends. ACS Sustain Chem Eng 9(35):11916–11926

    Article  CAS  Google Scholar 

  • Rubin HN, Neufeld BH, Reynolds MM (2018) Surface-anchored metal–organic framework–cotton material for tunable antibacterial copper delivery. ACS Appl Mater Inter 10(17):15189–15199

    Article  CAS  Google Scholar 

  • Sadeghifar H, Venditti R, Jur J, Gorga RE, Pawlak JJ (2017) Cellulose-lignin biodegradable and flexible UV protection film. ACS Sustain Chem Eng 5(1):625–631

    Article  CAS  Google Scholar 

  • Schaller C, Rogez D, Braig A (2008) Hydroxyphenyl-s-triazines: advanced multipurpose UV-absorbers for coatings. J Coat Technol Research 5(1):25–31

    Article  CAS  Google Scholar 

  • Sun L, Yang S, Qian X, An X (2020a) Cyclodextrin and cellulose combination product developed by click chemistry: fascinating design for inclusion of ciprofloxacin. Cellulose 27(10):5955–5970

    Article  CAS  Google Scholar 

  • Sun L, Yang S, Qian X, An X (2020b) High-efficacy and long term antibacterial cellulose material: anchored guanidine polymer via double “click chemistry.” Cellulose 27(15):8799–8812

    Article  Google Scholar 

  • Sun L, Shen J, An X, Qian X (2021) Fire retardant, UV and blue light double-blocking super clear Carboxymethylated cellulose bioplastics enabled by metal organic framework. Carbohydr Polym 273:118535

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Qian X, An X (2022) Transparent and highly efficient full-band UV-shielding bioplastic designed by in situ embedded metal-organic frameworks (MIL-68 (In)-NH2) in cellulose matrix. Cellulose 29(2):1017–1034

    Article  CAS  Google Scholar 

  • Sun L, Ana X, Qian X (2022) Nano-MIL-88A(Fe) enabled clear cellulose films with excellent UV-Shielding performance and robust environment resistance. Nanomaterials 12(11):1891

  • Tan F, Zha L, Zhou Q (2022) Assembly of AIEgen-based fluorescent metal–organic framework nanosheets and seaweed cellulose nanofibrils for humidity sensing and UV-shielding. Adv Mater 34(28):2201470

    Article  CAS  Google Scholar 

  • Tu Y, Zhou L, Jin YZ, Gao C, Ye ZZ, Yang YF, Wang QL (2010) Transparent and flexible thin films of ZnO-polystyrene nanocomposite for UV-shielding applications. J Mater Chem 20(8):1594–1599

    Article  CAS  Google Scholar 

  • Wang Q, Cai J, Zhang L, Xu M, Cheng H, Han CC, Kuga S, Xiao J, Xiao R (2013) A bioplastic with high strength constructed from a cellulose hydrogel by changing the aggregated structure. J Mater Chem A 1(22):6678–6686

    Article  CAS  Google Scholar 

  • Wang H, Wang Y, Liu D, Sun Z, Wang H (2014) Effects of additives on weather-resistance properties of polyurethane films exposed to ultraviolet radiation and ozone atmosphere. J Nanomater 2014:1–7

    Google Scholar 

  • Wang Y, Mo Z, Zhang C, Zhang P, Guo R, Gou H, Hu R, Wei X (2015) Morphology-controllable 3D flower-like TiO2 for UV shielding application. J Ind Eng Chem 32:172–177

    Article  CAS  Google Scholar 

  • Wang Y, Su J, Li T, Ma P, Bai H, Xie Y, Chen M, Dong W (2017) A novel UV-shielding and transparent polymer film: when bioinspired dopamine–melanin hollow nanoparticles join polymers. ACS Appl Mater Inter 9(41):36281–36289

    Article  CAS  Google Scholar 

  • Wang W, Zhang B, Jiang S, Bai H, Zhang S (2019) Use of CeO2 nanoparticles to enhance UV-shielding of transparent regenerated cellulose films. Polymers 11(3):458

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Guo X, Xue J (2021) Biofilm-developed microplastics as vectors of pollutants in aquatic environments. Environ Sci Technol 55(19):12780–12790

    CAS  PubMed  Google Scholar 

  • Xia J, Liu Z, Chen Y, Cao Y, Wang Z (2020) Effect of lignin on the performance of biodegradable cellulose aerogels made from wheat straw pulp-LiCl/DMSO solution. Cellulose 27(2):879–894

    Article  CAS  Google Scholar 

  • Xie S, Zhao J, Zhang B, Wang Z, Ma H, Yu C, Yu M, Li L, Li J (2015) Graphene oxide transparent hybrid film and its ultraviolet shielding property. ACS Appl Mater Inter 7(32):17558–17564

    Article  CAS  Google Scholar 

  • Xie Y, Gao H, Zhang P, Qin C, Nie Y, Liu X (2022) Preparation of degradable wood cellulose films using ionic liquids. ACS Appl Poly Mater 4(5):3598–3607

    Article  CAS  Google Scholar 

  • Xu J, Nagasawa H, Kanezashi M, Tsuru T (2018) UV-protective TiO2 thin films with high transparency in visible light region fabricated via atmospheric-pressure plasma-enhanced chemical vapor deposition. ACS Appl Mater Inter 10(49):42657–42665

    Article  CAS  Google Scholar 

  • Yang Y, Zhang S, Huang W, Guo Z, Huang J, Yang H, Ye D, Xu W, Gu S (2021) Multi-functional cotton textiles design using in situ generating zeolitic imidazolate framework-67(ZIF-67) for effective UV resistance, antibacterial activity, and self-cleaning. Cellulose 28(9):5923–5935

    Article  CAS  Google Scholar 

  • Zhang XF, Song L, Wang Z, Wang Y, Yao J (2019) Highly transparent graphene oxide/cellulose composite film bearing ultraviolet shielding property. Int J Biol Macromol 145:663–667

    Article  PubMed  Google Scholar 

  • Zhang K, Yang Z, Mao X, Chen X-L, Li H-H, Wang Y-Y (2020) Multifunctional textiles/metal−organic frameworks composites for efficient ultraviolet radiation blocking and noise reduction. ACS Appl Mater Inter 12(49):55316–55323

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to acknowledge the support of the Fundamental Research Funds for the Central Universities (Grant No. 2572018AB05) and the National Natural Science Foundation of China (Grant No. 31770620) for this work.

Funding

This work was supported by the Fundamental Research Funds for the Central Universities (G. No. 2572018AB05) and the National Natural Science Foundation of China (G. No. 31770620).

Author information

Authors and Affiliations

Authors

Contributions

L.S.: Conceptualization, methodology, formal analysis, investigation, funding acquisition, writing—original draft. L.L.: Investigation, Methodology, Validation. Q.F. prepared Scheme 1, Figs. 6 and 9. X.Q.: Conceptualization, Writing—review & editing, supervision, funding acquisition. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xueren Qian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 961 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Li, L., Fu, Q. et al. Green fabrication of transparent Copper(II)-imidazolate metal–organic framework/cellulose nanocomposite films for antibacterial and UV-shielding applications. Cellulose 30, 3569–3588 (2023). https://doi.org/10.1007/s10570-023-05106-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-023-05106-x

Keywords

Navigation