Skip to main content
Log in

Aerogel nanoarchitectonics based on cellulose nanocrystals and nanofibers from eucalyptus pulp: preparation and comparative study

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Nanocellulose-based materials have attracted significant attention because of their attractive advantages. Particularly, aerogel, a porous nanocellulose material, have been used in diverse applications owing to their unique properties. In this study, short rod-like cellulose nanocrystals (CNCs) and long filament-like cellulose nanofibers (CNFs) were isolated from a eucalyptus pulp source using acidolysis and oxidation/mechanical methods, respectively. Subsequently, two different aerogels were prepared from the CNCs and CNFs using the sol–gel method and their properties were compared. The morphology, chemical structure, chemical composition, shrinkage rate, internal structure, thermal degradation, biophysical properties, and mechanical properties of the as-prepared aerogels were compared. Furthermore, the shrinkage of the CNC and CNF aerogels was effectively controlled using a supercritical CO2 drying process. Additionally, three decomposition regions were observed in the thermogravimetric analysis curves of the aerogels; however, the CNF aerogels exhibited enhanced thermal stability than the CNC aerogels. Further, the CNC and CNF aerogels exhibited a mesoporous structure, and the compressive strength of the CNC and CNF aerogels under 85% strain was 269.5 and 299.5 kPa, respectively. This study provides fundamental knowledge on the fabrication of CNCs, CNFs, and corresponding aerogels from lignocellulosic biomass, and their characteristics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahankari S, Paliwal P, Subhedar A, Kargarzadeh H (2021) Recent developments in nanocellulose-based aerogels in thermal applications: a review. ACS Nano 15:3849–3874

    Article  CAS  PubMed  Google Scholar 

  • Aminah B, Kose R (2019) Properties of cellulose nanofibers prepared from recycled pulp fiber using the aqueous counter collision method. J Fiber Sci Technol 75:140–144

    Article  Google Scholar 

  • Budtova T (2019) Cellulose II aerogels: a review. Cellulose 26:81–121

    Article  CAS  Google Scholar 

  • Chen WS, Li Q, Wang YC, Yi X, Zeng J, Yu HP et al (2014) Comparative study of aerogels obtained from differently prepared nanocellulose fibers. Chemsuschem 7:154–161

    Article  CAS  PubMed  Google Scholar 

  • Chen ZJ, Gao H, Li W, Li SJ, Liu SX, Li J (2020) Research progress of biomass-based optical materials. J for Eng 5:1–12

    Google Scholar 

  • Dai L, Long Z, Chen J, An XY, Cheng D, Khan A et al (2017) Robust guar gum/cellulose nanofibrils multilayer films with good barrier properties. ACS Appl Mater Interfaces 9:5477–5485

    Article  CAS  PubMed  Google Scholar 

  • De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631

    Article  Google Scholar 

  • Dong H, Ding QJ, Jiang YF, Li X, Han WJ (2021) Pickering emulsions stabilized by spherical cellulose nanocrystals. Carbohydr Polym 265:118101

    Article  CAS  PubMed  Google Scholar 

  • Du HS, Liu WM, Zhang ML, Si CL, Zhang XY, Li B (2019) Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr Polym 209:130–144

    Article  CAS  PubMed  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • Gong C, Ni JP, Tian C, Su ZH (2021) Research in porous structure of cellulose aerogel made from cellulose nanofibrils. Int J Biol Macromol 172:573–579

    Article  CAS  PubMed  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  PubMed  Google Scholar 

  • He XH, Chen TT, Jiang TY, Wang C, Luan YH, Liu PT et al (2021) Preparation and adsorption properties of magnetic hydrophobic cellulose aerogels based on refined fibers. Carbohydr Polym 260:117790

    Article  CAS  PubMed  Google Scholar 

  • Hult EL, Larsson PT, Iversen T (2000) A comparative CP/MAS C-13-NMR study of cellulose structure in spruce wood and kraft pulp. Cellulose 7:35–55

    Article  CAS  Google Scholar 

  • Jiang F, Hsieh YL (2013) Chemically and mechanically isolated nanocellulose and their self-assembled structures. Carbohydr Polym 95:32–40

    Article  CAS  PubMed  Google Scholar 

  • Jiang S, Zhang ML, Li MM, Liu L, Liu LF, Yu JY (2020) Cellulose nanofibril (CNF) based aerogels prepared by a facile process and the investigation of thermal insulation performance. Cellulose 27:6217–6233

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Huang J, Lin N, Ahmad I, Mariano M, Dufresne A et al (2018) Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog Polym Sci 87:197–227

    Article  CAS  Google Scholar 

  • Khan A, Wen YB, Huq T, Ni YH (2018) Cellulosic nanomaterials in food and nutraceutical applications: a review. J Agric Food Chem 66:8–19

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Kim J, Henzie J, Ko Y, Lim H, Kwon G et al (2021) Mesoporous Au films assembled on flexible cellulose nanopaper as high-performance SERS substrates. Chem Eng J 419:129445

    Article  CAS  Google Scholar 

  • Kim D, Ko Y, Kwon G, Choo YM, You J (2018) Low-cost, high-performance plasmonic nanocomposites for hazardous chemical detection using surface enhanced Raman scattering. Sens Actuators B 274:30–36

    Article  CAS  Google Scholar 

  • Kim D, Ko Y, Kwon G, Kim UJ, Lee JH, You J (2019) 2,2,6,6-Tetramethylpiperidine-1-oxy-oxidized cellulose nanofiber-based nanocomposite papers for facile in situ surface-enhanced raman scattering detection. ACS Sustain Chem Eng 7:15640–15647

    Article  CAS  Google Scholar 

  • Kim SH, Kim JM, Ahn DB, Lee SY (2020) Cellulose Nanofiber/carbon nanotube-based bicontinuous ion/electron conduction networks for high-performance aqueous Zn-ion batteries. Small 16:2002837

    Article  CAS  Google Scholar 

  • Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindstrom T, Ankerfors M, Gray D et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50:5438–5466

    Article  CAS  Google Scholar 

  • Kwon G, Lee K, Kim D, Jeon Y, Kim UJ, You J (2020) Cellulose nanocrystal-coated TEMPO-oxidized cellulose nanofiber films for high performance all-cellulose nanocomposites. J Hazard Mater 398:123100

    Article  CAS  PubMed  Google Scholar 

  • Lee K, Jeon Y, Kim D, Kwon G, Kim UJ, Hong C et al (2021) Double-crosslinked cellulose nanofiber based bioplastic films for practical applications. Carbohydr Polym 260:117817

    Article  CAS  PubMed  Google Scholar 

  • Leung ACW, Hrapovic S, Lam E, Liu YL, Male KB, Mahmoud KA et al (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305

    Article  CAS  PubMed  Google Scholar 

  • Li CD, Chen ZF, Dong WF, Lin LL, Zhu XM, Liu QS et al (2021) A review of silicon-based aerogel thermal insulation materials: Performance optimization through composition and microstructure. J Non-Cryst Solids 553:120517

    Article  CAS  Google Scholar 

  • Li Y, Liu XF, Nie XY, Yang WW, Wang YD, Yu RH et al (2019) Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv Funct Mater 29:1807624

    Article  Google Scholar 

  • Li YL, Liu YS, Liu Y, Lai WC, Huang F, Ou AP et al (2018) Ester crosslinking enhanced hydrophilic cellulose nanofibrils aerogel. ACS Sustain Chem Eng 6:11979–11988

    Article  CAS  Google Scholar 

  • Liu S, Zhang Y, Jiang H, Wang XY, Zhang TM, Yao Y (2018) High CO2 adsorption by amino-modified bio-spherical cellulose nanofibres aerogels. Environ Chem Lett 16:605–614

    Article  CAS  Google Scholar 

  • Lu ZH, An XY, Zhang H, Liu LQ, Dai HQ, Cao HB et al (2020) Cationic cellulose nano-fibers (CCNF) as versatile flocculants of wood pulp for high wet web performance. Carbohydr Polym 229:115434

    Article  CAS  PubMed  Google Scholar 

  • Lv D, Du HS, Che XP, Wu MY, Zhang YD, Liu C et al (2019) Tailored and integrated production of functional cellulose nanocrystals and cellulose nanofibrils via sustainable formic acid hydrolysis: kinetic study and characterization. ACS Sustainable Chem Eng 7:9449–9463

    Article  CAS  Google Scholar 

  • Mautner A (2020) Nanocellulose water treatment membranes and filters: a review. Polym Int 69:741–751

    Article  CAS  Google Scholar 

  • Nagarajan KJ, Ramanujam NR, Sanjay MR, Siengchin S, Rajan BS, Basha KS et al (2021) A comprehensive review on cellulose nanocrystals and cellulose nanofibers: pretreatment, preparation, and characterization. Polym Compos 42:1588–1630

    Article  CAS  Google Scholar 

  • Oh SY, Yoo DI, Shin Y, Seo G (2005) FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr Res 340:417–428

    Article  CAS  PubMed  Google Scholar 

  • Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4265

    Article  CAS  PubMed  Google Scholar 

  • Rol F, Belgacem MN, Gandini A, Bras J (2019) Recent advances in surface-modified cellulose nanofibrils. Prog Polym Sci 88:241–264

    Article  CAS  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Sehaqui H, Salajkova M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6:1824–1832

    Article  CAS  Google Scholar 

  • Shamskar KR, Heidari H, Rashidi A (2019) Study on nanocellulose properties processed using different methods and their aerogels. J Polym Environ 27:1418–1428

    Article  Google Scholar 

  • Shang QQ, Chen JQ, Yang XH, Liu CG, Hu Y, Zhou YH (2019) Fabrication and oil absorbency of superhydrophobic magnetic cellulose aerogels. J for Eng 4:105–111

    Google Scholar 

  • Song SW, Kim D, Kim J, You JM, Kim HM (2021) Flexible nanocellulose-based SERS substrates for fast analysis of hazardous materials by spiral scanning. J Hazard Mater 414:125160

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Zhang M, Hou QX, Liu R, Wu T, Si CL (2016) Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers. Cellulose 23:439–450

    Article  CAS  Google Scholar 

  • Sun L, Song GS, Sun YF, Fu Q, Pan CX (2020a) MXene/N-doped carbon foam with three-dimensional hollow neuron-like architecture for freestanding, highly compressible all solid-state supercapacitors. ACS Appl Mater Interfaces 12:44777–44788

    Article  CAS  PubMed  Google Scholar 

  • Sun XX, Li MC, Ren SX, Lei TZ, Lee SY, Lee SY et al (2020) Zeolitic imidazolate framework-cellulose nanofiber hybrid membrane as Li-Ion battery separator: basic membrane property and battery performance. J Power Sources 454:227878

    Article  CAS  Google Scholar 

  • Sun Y, Chu YL, Wu WB, Xiao HN (2021) Nanocellulose-based lightweight porous materials: a review. Carbohydr Polym 255:117489

    Article  CAS  PubMed  Google Scholar 

  • Thomas B, Raj MC, Athira KB, Rubiyah MH, Joy J, Moores A et al (2018) Nanocellulose, a versatile green platform: from biosources to materials and their applications. Chem Rev 118:11575–11625

    Article  CAS  PubMed  Google Scholar 

  • Tran VH, Kim JD, Kim JH, Kim SK, Lee JM (2020) Influence of cellulose nanocrystal on the cryogenic mechanical behavior and thermal conductivity of polyurethane composite. J Polym Environ 28:1169–1179

    Article  CAS  Google Scholar 

  • Wan CC, Jiao Y, Wei S, Zhang LY, Wu YQ, Li J (2019) Functional nanocomposites from sustainable regenerated cellulose aerogels: a review. Chem Eng J 359:459–475

    Article  CAS  Google Scholar 

  • Wang XY, Zhang Y, Jiang H, Song YX, Zhou ZB, Zhao H (2016) Fabrication and characterization of nano-cellulose aerogels via supercritical CO drying technology. Mater Lett 183:179–182

  • Wang CH, Kim J, Tang J, Na J, Kang YM, Kim M et al (2020a) Large-Scale synthesis of MOF-derived superporous carbon aerogels with extraordinary adsorption capacity for organic solvents. Angew Chem Int Ed 59:2066–2070

    Article  CAS  Google Scholar 

  • Wang Z, Zhu WK, Huang RZ, Zhang Y, Jia C, Zhao H et al (2020b) Fabrication and characterization of cellulose nanofiber aerogels prepared via two different drying techniques. Polym 12:2583

    Article  CAS  Google Scholar 

  • Wei S, Ching YC, Chuah CH (2020) Synthesis of chitosan aerogels as promising carriers for drug delivery: a review. Carbohydr Polym 231:115744

    Article  CAS  PubMed  Google Scholar 

  • Xu XZ, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interfaces 5:2999–3009

    Article  CAS  PubMed  Google Scholar 

  • Xu WW, Liu CZ, Wu QL, Xie WW, Kim WY, Lee SY et al (2020) A stretchable solid-state zinc ion battery based on a cellulose nanofiber-polyacrylamide hydrogel electrolyte and a Mg0.23V2O5·1.0H2O cathode. J Mater Chem A 8:18327–18337

    Article  CAS  Google Scholar 

  • Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26:6016–6025

    Article  CAS  Google Scholar 

  • Yu YC, Shi XL, Liu L, Yao JM (2021) Highly compressible and durable superhydrophobic cellulose aerogels for oil/water emulsion separation with high flux. J Mater Sci 56:2763–2776

    Article  CAS  Google Scholar 

  • Zhao GM, Du J, Chen WM, Pan MZ, Chen DY (2019) Preparation and thermostability of cellulose nanocrystals and nanofibrils from two sources of biomass: rice straw and poplar wood. Cellulose 26:8625–8643

    Article  CAS  Google Scholar 

  • Zhang TM, Zhang Y, Jiang H, Liu S, Yao Y (2018a) Characterization of CNF/CNC composite aerogel. J for Eng 3:91–96

    Google Scholar 

  • Zhang TM, Zhang Y, Wang XY, Liu S, Yao Y (2018b) Characterization of the nano-cellulose aerogel from mixing CNF and CNC with different ratio. Mater Lett 229:103–106

    Article  CAS  Google Scholar 

  • Zhu WK, Ji MX, Chen FQ, Wang Z, Chen W, Xue YY et al (2020a) Formaldehyde-free resin impregnated paper reinforced with cellulose nanocrystal (CNC): formulation and property analysis. J Appl Polym Sci 137:48931

    Article  CAS  Google Scholar 

  • Zhu WK, Ji MX, Zhang Y, Wang Z, Chen W, Xue YY (2019) Synthesis and characterization of aminosilane grafted cellulose nanocrystal modified formaldehyde-free decorative paper and its CO2 adsorption capacity. Polym 11:2021

    Article  CAS  Google Scholar 

  • Zhu WK, Yao Y, Zhang Y, Jiang H, Wang Z, Chen W et al (2020b) Preparation of an amine-modified cellulose nanocrystal aerogel by chemical vapor deposition and its application in CO2 capture. Ind Eng Chem Res 59:16660–16668

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Natural Science Foundation of Jiangsu Province of China (BK20201072), the National Natural Science Foundation of China (32071687, 22108091), the National First-class Disciplines (PNFD), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX20_0868), and the Self-made Experimental Teaching Instrument Project of Nanjing Forestry University of 2021 (nlzzyq202113). In addition, this research was supported by the Yonsei University Research Fund of 2021 (2021-22-0034).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jungmok You, Chong Jia or Jeonghun Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6418 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Zhang, Y., Wang, X. et al. Aerogel nanoarchitectonics based on cellulose nanocrystals and nanofibers from eucalyptus pulp: preparation and comparative study. Cellulose 29, 817–833 (2022). https://doi.org/10.1007/s10570-021-04370-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-021-04370-z

Keywords

Navigation