Ayad D, Carrot C, Guillet J (2001) Influence of the MWD of poly(vinylidene Fluoride) on its viscoelastic behaviour in the melt, part II: relaxation time spectra. Int J Polym Anal Charact 6:639–655. https://doi.org/10.1080/10236660108030874
CAS
Article
Google Scholar
Bentivoglio G, Roeder T, Fasching M, Buchberger M, Schottenberger H, Sixta H (2006) Cellulose processing with chloride-based ionic liquids. Lenzinger Berichte 86:154–161
CAS
Google Scholar
Blachot J-F, Brunet N, Navard P, Cavaillé J-Y (1998) Rheological behavior of cellulose/monohydrate of n-methylmorpholine n-oxide solutions part 1: liquid state. Rheol Acta 37:107–114. https://doi.org/10.1007/s003970050096
CAS
Article
Google Scholar
Brandt A, Hallett JP, Leak DJ, Murphy RJ, Welton T (2010) The effect of the ionic liquid anion in the pretreatment of pine wood chips. Green Chem 12:672–679. https://doi.org/10.1039/b918787a
CAS
Article
Google Scholar
Brandt A, Grasvik J, Hallett JP, Welton T (2013) Deconstruction of lignocellulosic biomass with ionic liquids. Green Chem 15:550–583. https://doi.org/10.1039/c2gc36364j
CAS
Article
Google Scholar
Bredereck K, Hermanutz F (2005) Man-made cellulosics. Rev Prog Color Relat Top 35:59–75. https://doi.org/10.1111/j.1478-4408.2005.tb00160.x
CAS
Article
Google Scholar
Budtova T, Navard P (2016) Cellulose in NaOH–water based solvents: a review. Cellulose 23:5–55. https://doi.org/10.1007/s10570-015-0779-8
CAS
Article
Google Scholar
Buijtenhuijs FA, Abbas M, Witteveen AJ (1986) The degradation and stabilization of cellulose dissolved in N-methylmorpholine N-oxide (NMMO). Papier (Darmstadt) 40:615–619
CAS
Google Scholar
Chen X, Zhang Y, Wang H, Wang S-W, Liang S, Colby RH (2011) Solution rheology of cellulose in 1-butyl-3-methyl imidazolium chloride. J Rheol (NY) 55:485–494. https://doi.org/10.1122/1.3553032
CAS
Article
Google Scholar
Clough MT, Geyer K, Hunt PA, Son S, Vagt U, Welton T (2015) Ionic liquids: not always innocent solvents for cellulose. Green Chem 17:231–243. https://doi.org/10.1039/C4GC01955E
CAS
Article
Google Scholar
Crowhurst L, Mawdsley PR, Perez-Arlandis JM, Salter PA, Welton T (2003) Solvent-solute interactions in ionic liquids. PCCP 5:2790–2794. https://doi.org/10.1039/B303095D
CAS
Article
Google Scholar
Doherty TV, Mora-Pale M, Foley SE, Linhardt RJ, Dordick JS (2010) Ionic liquid solvent properties as predictors of lignocellulose pretreatment efficacy. Green Chem 12:1967–1975. https://doi.org/10.1039/C0GC00206B
CAS
Article
Google Scholar
Ebner G, Schiehser S, Potthast A, Rosenau T (2008) Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Lett 49:7322–7324. https://doi.org/10.1016/j.tetlet.2008.10.052
CAS
Article
Google Scholar
El Seoud OA, Koschella A, Fidale LC, Dorn S, Heinze T (2007) Applications of ionic liquids in carbohydrate chemistry: a window of opportunities. Biomacromol 8:2629–2647. https://doi.org/10.1021/bm070062i
CAS
Article
Google Scholar
Elsayed S, Hellsten S, Guizani C, Witos J, Rissanen M, Rantamäki AH, Varis P, Wiedmer SK, Sixta H (2020) Recycling of superbase-based ionic liquid solvents for the production of textile-grade regenerated cellulose fibers in the lyocell process. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.0c05330
Article
Google Scholar
Everaert G, Van Cauwenberghe L, De Rijcke M, Koelmans AA, Mees J, Vandegehuchte M, Janssen CR (2018) Risk assessment of microplastics in the ocean: modelling approach and first conclusions. Environ Pollut 242:1930–1938. https://doi.org/10.1016/j.envpol.2018.07.069
CAS
Article
PubMed
Google Scholar
Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26:1473–1524. https://doi.org/10.1016/S0079-6700(01)00025-9
CAS
Article
Google Scholar
Fröba AP, Kremer H, Leipertz A (2008) Density, refractive index, interfacial tension, and viscosity of ionic liquids [EMIM][EtSO4], [EMIM][NTf2], [EMIM][N(CN)2], and [OMA][NTf2] in dependence on temperature at atmospheric pressure. J Phys Chem B 112:12420–12430. https://doi.org/10.1021/jp804319a
CAS
Article
PubMed
Google Scholar
Fukaya Y, Sugimoto A, Ohno H (2006) Superior solubility of polysaccharides in low viscosity, polar, and halogen-free 1,3-dialkylimidazolium formates. Biomacromol 7:3295–3297. https://doi.org/10.1021/bm060327d
CAS
Article
Google Scholar
Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46. https://doi.org/10.1039/B713289A
CAS
Article
Google Scholar
Fulchiron R, Michel A, Verney V, Roustant JC (1995) Correlations between relaxation time spectrum and melt spinning behavior of polypropylene. II: melt spinning simulation from relaxation time spectrum. Polym Eng Sci 35:518–527. https://doi.org/10.1002/pen.760350610
CAS
Article
Google Scholar
Gavillon R, Budtova T (2007) Kinetics of cellulose regeneration from cellulose − NaOH − water gels and comparison with cellulose − N-methylmorpholine-N-oxide − water solutions. Biomacromol 8:424–432. https://doi.org/10.1021/bm060376q
CAS
Article
Google Scholar
Gazit OM, Katz A (2012) Dialkylimidazolium ionic liquids hydrolyze cellulose under mild conditions. Chemsuschem 5:1542–1548. https://doi.org/10.1002/cssc.201100803
CAS
Article
PubMed
Google Scholar
Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromol 10:1188–1194. https://doi.org/10.1021/bm801430x
CAS
Article
Google Scholar
Goldstein MC, Goodwin DS (2013) Gooseneck barnacles (Lepas spp.) ingest microplastic debris in the North Pacific Subtropical Gyre. PeerJ 1:e184 https://doi.org/10.7717/peerj.184
Hansen CM, Björkman A (1998) The ultrastructure of wood from a solubility parameter point of view. Holzforschung 52:335–344. https://doi.org/10.1515/hfsg.1998.52.4.335
CAS
Article
Google Scholar
Hattori K, Cuculo JA, Hudson SM (2002) New solvents for cellulose: hydrazine/thiocyanate salt system. J Polym Sci, Part A: Polym Chem 40:601–611. https://doi.org/10.1002/pola.10135
CAS
Article
Google Scholar
Hattori K, Abe E, Yoshida T, Cuculo JA (2004) New solvents for cellulose. II. Ethylenediamine/thiocyanate salt system. Polym J 36:123–130. https://doi.org/10.1295/polymj.36.123
CAS
Article
Google Scholar
Hauru LKJ, Hummel M, King AWT, Kilpelainen I, Sixta H (2012) Role of solvent parameters in the regeneration of cellulose from ionic liquid solutions. Biomacromol 13:2896–2905. https://doi.org/10.1021/bm300912y
CAS
Article
Google Scholar
Hauru LKJ, Hummel M, Nieminen K, Michud A, Sixta H (2016) Cellulose regeneration and spinnability from ionic liquids. Soft Matter 12:1487–1495. https://doi.org/10.1039/c5sm02618k
CAS
Article
PubMed
Google Scholar
Haward SJ, Sharma V, Butts CP, McKinley GH, Rahatekar SS (2012) Shear and extensional rheology of cellulose/ionic liquid solutions. Biomacromol 13:1688–1699. https://doi.org/10.1021/bm300407q
CAS
Article
Google Scholar
Heinze T, Dicke R, Koschella A, Kull AH, Klohr E-A, Koch W (2000) Effective preparation of cellulose derivatives in a new simple cellulose solvent. Macromol Chem Phys 201:627–631. https://doi.org/10.1002/(SICI)1521-3935(20000301)201:6%3c627:AID-MACP627%3e3.0.CO;2-Y
CAS
Article
Google Scholar
Horvath AL (2006) Solubility of structurally complicated materials: I. Wood. J Phys Chem Ref Data 35:77–92. https://doi.org/10.1063/1.2360606
CAS
Article
Google Scholar
Hummel M, Michud A, Tanttu M, Asaadi S, Ma Y, Hauru LKJ, Parviainen A, King AWT, Kilpeläinen I, Sixta H (2016) Ionic liquids for the production of man-made cellulosic fibers: opportunities and challenges. In: Rojas OJ (ed) Cellulose chemistry and properties: fibers, nanocelluloses and advanced materials. Springer, Cham, pp 133–168. https://doi.org/10.1007/12_2015_307
Chapter
Google Scholar
Hummel M, Michud A, Ma Y, Roselli A, Stepan A, Hellstén S, Asaadi S, Sixta H (2019) High-performance lignocellulosic fibers spun from ionic liquid solution. In: Rosenau T, Potthast A, Hell J (eds) Cellulose science and technology. Wiley, New Jersey, pp 341–370. https://doi.org/10.1002/9781119217619.ch14
Chapter
Google Scholar
Hyde AM, Calabria R, Arvary R, Wang X, Klapars A (2019) Investigating the underappreciated hydrolytic instability of 1,8-diazabicyclo[5.4.0]undec-7-ene and related unsaturated nitrogenous bases. Org Process Res Dev 23:1860–1871. https://doi.org/10.1021/acs.oprd.9b00187
CAS
Article
Google Scholar
Jiang G, Huang W, Li L, Wang X, Pang F, Zhang Y, Wang H (2012) Structure and properties of regenerated cellulose fibers from different technology processes. Carbohydr Polym 87:2012–2018. https://doi.org/10.1016/j.carbpol.2011.10.022
CAS
Article
Google Scholar
Jusner P, Aoki M, Potthast A, Rosenau T (2020) A cautionary note on “exothermic events” upon contact of carbodiimide coupling agents and the cellulose solvent N-methylmorpholine-N-oxide. Cellulose 27:7349–7359. https://doi.org/10.1007/s10570-020-03293-5
CAS
Article
Google Scholar
Kamida K, Okajima K, Matsui T, Kowsaka K (1984) Study on the solubility of cellulose in aqueous alkali solution by deuteration IR and 13C NMR. Polym J 16:857–866. https://doi.org/10.1295/polymj.16.857
Article
Google Scholar
Kamide K, Okajima K, Kowsaka K (1992) Dissolution of natural cellulose into aqueous alkali solution: role of super-molecular structure of cellulose. Polym J 24:71–86. https://doi.org/10.1295/polymj.24.71
CAS
Article
Google Scholar
Köhler S, Heinze T (2007) New solvents for cellulose: dimethyl sulfoxide/ammonium fluorides. Macromol Biosci 7:307–314. https://doi.org/10.1002/mabi.200600197
CAS
Article
PubMed
Google Scholar
Kosmulski M, Gustafsson J, Rosenholm JB (2004) Thermal stability of low temperature ionic liquids revisited. Thermochim Acta 412:47–53. https://doi.org/10.1016/j.tca.2003.08.022
CAS
Article
Google Scholar
Kuzmina O, Bhardwaj J, Vincent SR, Wanasekara ND, Kalossaka LM, Griffith J, Potthast A, Rahatekar S, Eichhorn SJ, Welton T (2017) Superbase ionic liquids for effective cellulose processing from dissolution to carbonisation. Green Chem 19:5949–5957. https://doi.org/10.1039/C7GC02671D
CAS
Article
Google Scholar
Laus G, Bentivoglio G, Schottenberger H, Kahlenberg V, Kopacka H, Röder T, Sixta H (2005) Ionic liquids: current developments, potential and drawbacks for industrial applications. Lenzinger Berichte 84:71–85
CAS
Google Scholar
Lê HQ, Sixta H, Hummel M (2019) Ionic liquids and gamma-valerolactone as case studies for green solvents in the deconstruction and refining of biomass. Curr Opin Green Sustain Chem 18:20–24. https://doi.org/10.1016/j.cogsc.2018.11.009
Article
Google Scholar
Lenz J, Schurz J, Wrentschur E (1994) On the elongation mechanism of regenerated cellulose fibers. Holzforschung 48:72–76. https://doi.org/10.1515/hfsg.1994.48.s1.72
CAS
Article
Google Scholar
Liebert T (2010) Cellulose solvents - remarkable history, bright future. In: Liebert T, Heinze TJ, Edgar KJ (eds) Cellulose solvents: for analysis, shaping and chemical modification, vol 1033. ACS symposium series. American Chemical Society, Washington, pp 3–54
Chapter
Google Scholar
Lu F, Cheng B, Song J, Liang Y (2012) Rheological characterization of concentrated cellulose solutions in 1-allyl-3-methylimidazolium chloride. J Appl Polym Sci 124:3419–3425. https://doi.org/10.1002/app.35363
CAS
Article
Google Scholar
Ma Y, Hummel M, Maattanen M, Sarkilahti A, Harlin A, Sixta H (2016a) Upcycling of waste paper and cardboard to textiles. Green Chem 18:858–866. https://doi.org/10.1039/c5gc01679g
CAS
Article
Google Scholar
Ma Y, Hummel M, Sixta H (2016b) Effect of lignin concentration in birch kraft pulp on fibre spinning from ionic liquid solutions. In: American Chemical Society. ACS spring meeting, San Diego
Maeki-Arvela P, Anugwom I, Virtanen P, Sjoeholm R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Ind Crops Prod 32:175–201. https://doi.org/10.1016/j.indcrop.2010.04.005
CAS
Article
Google Scholar
Meine N, Benedito F, Rinaldi R (2010) Thermal stability of ionic liquids assessed by potentiometric titration. Green Chem 12:1711–1714. https://doi.org/10.1039/c0gc00091d
CAS
Article
Google Scholar
Meister F, Kosan B (2015) A tool box for characterization of pulps and cellulose dopes in Lyocell technology. Nord Pulp Pap Res J 30:112–120. https://doi.org/10.3183/npprj-2015-30-01-p112-120
CAS
Article
Google Scholar
Michud A, Hummel M, Haward S, Sixta H (2015a) Monitoring of cellulose depolymerization in 1-ethyl-3-methylimidazolium acetate by shear and elongational rheology. Carbohydr Polym 117:355–363. https://doi.org/10.1016/j.carbpol.2014.09.075
CAS
Article
PubMed
Google Scholar
Michud A, Hummel M, Sixta H (2015b) Influence of molar mass distribution on the final properties of fibers regenerated from cellulose dissolved in ionic liquid by dry-jet wet spinning. Polym J 75:1–9. https://doi.org/10.1016/j.polymer.2015.08.017
CAS
Article
Google Scholar
Michud A, Hummel M, Sixta H (2016a) Influence of process parameters on the structure formation of man-made cellulosic fibers from ionic liquid solution. J Appl Polym Sci 133:177–185. https://doi.org/10.1002/app.43718
CAS
Article
Google Scholar
Michud A, Tanttu M, Asaadi S, Ma Y, Netti E, Kääriainen P, Persson A, Berntsson A, Hummel M, Sixta H (2016b) Ioncell-F: ionic liquid-based cellulosic textile fibres as alternative to viscose and Lyocell. Text Res J 86:543–552. https://doi.org/10.1177/0040517515591774
CAS
Article
Google Scholar
Nishiyama Y, Asaadi S, Ahvenainen P, Sixta H (2019) Water-induced crystallization and nano-scale spinodal decomposition of cellulose in NMMO and ionic liquid dope. Cellulose 26:281–289. https://doi.org/10.1007/s10570-018-2148-x
CAS
Article
Google Scholar
Parviainen A, King AWT, Mutikainen I, Hummel M, Selg C, Hauru LKJ, Sixta H, Kilpeläinen I (2013) Predicting cellulose solvating capabilities of acid-base conjugate ionic liquids. Chemsuschem 6:2161–2169. https://doi.org/10.1002/cssc.201300143
CAS
Article
PubMed
Google Scholar
Parviainen A, Wahlström R, Liimatainen U, Liitiä T, Rovio S, Helminen JKJ, Hyväkkö U, King AWT, Suurnäkki A, Kilpeläinen I (2015) Sustainability of cellulose dissolution and regeneration in 1,5-diazabicyclo[4.3.0]non-5-enium acetate: a batch simulation of the IONCELL-F process. RSC Adv 5:69728–69737. https://doi.org/10.1039/C5RA12386K
CAS
Article
Google Scholar
Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728. https://doi.org/10.1021/cr9001947
CAS
Article
PubMed
Google Scholar
Rinaldi R (2011) Instantaneous dissolution of cellulose in organic electrolyte solutions. Chem Commun (Cambridge, UK) 47:511–513. https://doi.org/10.1039/c0cc02421j
CAS
Article
Google Scholar
Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26:1763–1837. https://doi.org/10.1016/S0079-6700(01)00023-5
CAS
Article
Google Scholar
Sammons RJ, Collier JR, Rials TG, Petrovan S (2008) Rheology of 1-butyl-3-methylimidazolium chloride cellulose solutions. I. Shear rheology. J Appl Polym Sci 110:1175–1181. https://doi.org/10.1002/app.28733
CAS
Article
Google Scholar
Singh S, Simmons BA (2013) Ionic liquid pretreatment: mechanism, performance, and challenges. In: Wyman CE (ed) Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, pp 223–238. https://doi.org/10.1002/9780470975831.ch11
Sixta H, Michud A, Hauru L, Asaadi S, Ma Y, King A, Kilpeläinen I, Hummel M (2015) Ioncell-F: a high-strength regenerated cellulose fibre. Nord Pulp Pap Res J 30:43–57
CAS
Article
Google Scholar
Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. JACS 124:4974–4975. https://doi.org/10.1021/ja025790m
CAS
Article
Google Scholar
The Fiber Year (2013) World survey on textiles and nonwovens, Issue 13
The Fiber Year (2019) World survey on textiles and nonwovens, Issue 19
Walden P (1914) Molecular weights and electrical conductivity of several fused salts. Bull Acad Imp Sci 1800:405–422
Google Scholar
Wang H, Gurau G, Rogers RD (2012) Ionic liquid processing of cellulose. Chem Soc Rev 41:1519–1537. https://doi.org/10.1039/c2cs15311d
CAS
Article
PubMed
Google Scholar
Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083. https://doi.org/10.1021/cr980032t
CAS
Article
PubMed
Google Scholar
Yamashiki T, Matsui T, Kowsaka K, Saitoh M, Okajima K, Kamide K (1992) New class of cellulose fiber spun from the novel solution of cellulose by wet spinning method. J Appl Polym Sci 44:691–698. https://doi.org/10.1002/app.1992.070440416
CAS
Article
Google Scholar
Yoshiharu N, Shigenori K, Masahisa W, Takeshi O (1997) Cellulose microcrystal film of high uniaxial orientation. Macromolecules 30(6395–6397):1. https://doi.org/10.1021/ma970503y
Article
Google Scholar
Ziabicki A, Takserman-Krozer R (1964a) Effect of rheological factors on the length of liquid threads. Colloid Polym Sci 199:9–13. https://doi.org/10.1007/bf01499686
CAS
Article
Google Scholar
Ziabicki A, Takserman-Krozer R (1964b) Mechanism of breakage of liquid threads. Colloid Polym Sci 198:60–65. https://doi.org/10.1007/bf01499455
Article
Google Scholar
Zweckmair T, Hettegger H, Abushammala H, Bacher M, Potthast A, Laborie M-P, Rosenau T (2015) On the mechanism of the unwanted acetylation of polysaccharides by 1,3-dialkylimidazolium acetate ionic liquids: part 1—analysis, acetylating agent, influence of water, and mechanistic considerations. Cellulose 22:3583–3596. https://doi.org/10.1007/s10570-015-0756-2
CAS
Article
Google Scholar