Skip to main content
Log in

Enhancing the redispersibility of TEMPO-mediated oxidized cellulose nanofibrils in N,N-dimethylformamide by modification with cetyltrimethylammonium bromide

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this study, the modification of TEMPO-mediated oxidized cellulose nanofibrils (TOCNFs) with cetyltrimethylammonium bromide (CTAB) was investigated to increase the hydrophobicity, improve the fibril separation from the hydrogel, and enhance the redispersibility of the separated nanofibrils. The results showed that when modifying the original TOCNFs at a CTAB loading of 2.16 mmol/g cellulose, the charge coupling was close to 100%. Moreover, with increasing the CTAB dosage, the turbidity of the modified CTAB–TOCNFs was significantly increased while the viscosity and water retention value were decreased. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated that the molecular chain of CTAB was successfully grafted onto the backbone of TOCNFs following modification. The thermogravimetric analysis results also indicated the modification of TOCNFs with CTAB improved its thermal stability. Water contact angle measurements of the original and CTAB modified TOCNFs showed that the modified CTAB–TOCNFs had better hydrophobicity. Moreover, the results from the evaluation of the redispersibility of the fibrils separated from both the original CNF and CTAB–TOCNF suspensions demonstrated that the modification of TOCNFs with CTAB improved the redespersibility in N,N-dimethylformamide (DMF). Additionally, the increase of CTAB loading also significantly decreased the particle size of the redispersed fibrils in DMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CNF:

Cellulose nanofibril

CTAB:

Cetyltrimethylammonium bromide

DMF:

N,N-Dimethylformamide

FTIR:

Fourier transform infrared

KBr:

Potassium bromide

NaBr:

Sodium bromide

NTU:

Nephelometric turbidity units

TG:

Thermogravimetric

TOCNF:

TEMPO-mediated oxidized cellulose nanofibril

WRV:

Water retention value

XPS:

X-ray photoelectron spectroscopy

References

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278

    Article  CAS  PubMed  Google Scholar 

  • Abitbol T, Marway H, Cranston ED (2014) Surface modification of cellulose nanocrystals with cetyltrimethylammonium bromide. Nordic Pulp Pap Res J 29(1):46–57

    Article  CAS  Google Scholar 

  • Akın A, Işıklan N (2016) Microwave assisted synthesis and characterization of sodium alginate-graft-poly (N, N′-dimethylacrylamide). Int J Biol Macromol 82:530–540

    Article  CAS  PubMed  Google Scholar 

  • Alila S, Boufi S, Belgacem MN, Beneventi D (2005) Adsorption of a cationic surfactant onto cellulosic fibers I. Surface charge effects. Langmuir 21(18):8106–8113

    Article  CAS  PubMed  Google Scholar 

  • Alonso B, Harris RK, Kenwright AM (2002) Micellar solubilization: structural and conformational changes investigated by 1H and 13C liquid-state NMR. J Colloid Interface Sci 251(2):366–375

    Article  CAS  PubMed  Google Scholar 

  • Aulin C, Shchukarev A, Lindqvist J, Malmström E, Wågberg L, Lindström T (2008) Wetting kinetics of oil mixtures on fluorinated model cellulose surfaces. J Colloid Interface Sci 317(2):556–567

    Article  CAS  PubMed  Google Scholar 

  • Benhamou K, Dufresne A, Magnin A, Mortha G, Kaddami H (2014) Control of size and viscoelastic properties of nanofibrillated cellulose from palm tree by varying the TEMPO-mediated oxidation time. Carbohydr Polym 99:74–83

    Article  CAS  PubMed  Google Scholar 

  • Dhar N, Au D, Berry RC, Tam KC (2012) Interactions of nanocrystalline cellulose with an oppositely charged surfactant in aqueous medium. Colloids Surf A Physicochem Eng Asp 415:310–319

    Article  CAS  Google Scholar 

  • Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17(1):19–30

    Article  CAS  Google Scholar 

  • Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542

    Article  CAS  PubMed  Google Scholar 

  • Han J, Zhou C, Wu Y, Liu F, Wu Q (2013) Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules 14(5):1529–1540

    Article  CAS  PubMed  Google Scholar 

  • Ho T, Zimmermann T, Hauert R, Caseri W (2011) Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes. Cellulose 18(6):1391–1406

    Article  CAS  Google Scholar 

  • Hu Z, Ballinger S, Pelton R, Cranston ED (2015) Surfactant-enhanced cellulose nanocrystal Pickering emulsions. J Colloid Interface Sci 439:139–148

    Article  CAS  PubMed  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85

    Article  CAS  PubMed  Google Scholar 

  • Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292(1):5–31

    Article  CAS  Google Scholar 

  • Kavas H, Durmus Z, Şenel M, Kazan S, Baykal A, Toprak MS (2010) CTAB–Mn3O4 nanocomposites: synthesis, NMR and low temperature EPR studies. Polyhedron 29(5):1375–1380

    Article  CAS  Google Scholar 

  • Khalil HA, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, Jawaid M (2014) Production and modification of nanofibrillated cellulose using various mechanical processes: a review. Carbohydr Polym 99:649–665

    Article  CAS  PubMed  Google Scholar 

  • Kostic M, Pejic B, Skundric P (2008) Quality of chemically modified hemp fibers. Bioresour Technol 99(1):94–99

    Article  CAS  PubMed  Google Scholar 

  • Lavine BK, Cooper WT, He Y, Hendayana S, Han JH, Tetreault J (1994) Solid-state 13C NMR studies of ionic surfactants adsorbed on C-18 and C-8 silicas: implications for micellar liquid chromatography. J Colloid Interface Sci 165(2):497–504

    Article  CAS  Google Scholar 

  • Littunen K, Hippi U, Johansson L-S, Österberg M, Tammelin T, Laine J, Seppälä J (2011) Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr Polym 84:1039–1047

    Article  CAS  Google Scholar 

  • Liu T, Ding E, Xue F (2017) Polyacrylamide and poly(N, N-dimethylacrylamide) grafted cellulose nanocrystals as efficient flocculants for kaolin suspension. Int J Biol Macromol 103:1107–1112

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49(5):1285–1296

    Article  CAS  Google Scholar 

  • Missoum K, Belgacem M, Bras J (2013) Nanofibrillated cellulose surface modification: a review. Materials 6(5):1745–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morandi G, Thielemans W (2012) Synthesis of cellulose nanocrystals bearing photocleavable grafts by ATRP. Polym Chem 3(6):1402–1407

    Article  CAS  Google Scholar 

  • Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25

    Article  CAS  Google Scholar 

  • Okita Y, Saito T, Isogai A (2009) TEMPO-mediated oxidation of softwood thermomechanical pulp. Holzforschung 63(5):529–535

    Article  CAS  Google Scholar 

  • Penfold J, Tucker I, Petkov J, Thomas R (2007) Surfactant adsorption onto cellulose surfaces. Langmuir 23(16):8357–8364

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Gardner DJ, Han Y (2012) Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1):91–102

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491

    Article  CAS  PubMed  Google Scholar 

  • Salajková M, Berglund LA, Zhou Q (2012) Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 22(37):19798–19805

    Article  CAS  Google Scholar 

  • Salas C, Nypelö T, Rodriguez-Abreu C, Carrillo C, Rojas OJ (2014) Nanocellulose properties and applications in colloids and interfaces. Curr Opin Colloid Interface Sci 19(5):383–396

    Article  CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71(13):1593–1599

    Article  CAS  Google Scholar 

  • Shimizu M, Saito T, Isogai A (2014) Bulky quaternary alkylammonium counterions enhance the nanodispersibility of 2, 2, 6, 6-tetramethylpiperidine-1-oxyl-oxidized cellulose in diverse solvents. Biomacromolecules 15(5):1904–1909

    Article  CAS  PubMed  Google Scholar 

  • Sui Z, Chen X, Wang L, Xu L, Zhuang W, Chai Y, Yang C (2006) Capping effect of CTAB on positively charged Ag nanoparticles. Physica E Low Dimens Syst Nanostruct 33(2):308–314

    Article  CAS  Google Scholar 

  • Syverud K, Xhanari K, Chinga-Carrasco G, Yu Y, Stenius P (2011) Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy. J Nanopart Res 13(2):773–782

    Article  CAS  Google Scholar 

  • Takaichi S, Saito T, Tanaka R, Isogai A (2014) Improvement of nanodispersibility of oven-dried TEMPO-oxidized celluloses in water. Cellulose 21(6):4093–4103

    Article  CAS  Google Scholar 

  • Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11(2):454–464

    Article  CAS  PubMed  Google Scholar 

  • Xhanari K, Syverud K, Chinga-Carrasco G, Paso K, Stenius P (2011) Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants. Cellulose 18(2):257–270

    Article  CAS  Google Scholar 

  • Zhang M, Hubbe MA, Venditti RA, Heitmann JA (2004) Effects of sugar addition before drying on the wet flexibility of redispersed kraft fibres. J Pulp Pap Sci 30(1):29–34

    Google Scholar 

  • Zhou JH, Sui ZJ, Zhu J, Li P, Chen D, Dai YC, Yuan WK (2007) Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 45(4):785–796

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the financial support from the National Natural Science Foundation of China (Grant No. 31700514), and the Natural Science Foundation of Tianjin, China (Grant No. 18JCYBJC86500). The valuable comments made by the anonymous reviewers are also sincerely appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaoyang Yuan or Yangbing Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, J., Yuan, Z., Wang, C. et al. Enhancing the redispersibility of TEMPO-mediated oxidized cellulose nanofibrils in N,N-dimethylformamide by modification with cetyltrimethylammonium bromide. Cellulose 26, 7769–7780 (2019). https://doi.org/10.1007/s10570-019-02655-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02655-y

Keywords

Navigation