Skip to main content
Log in

Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Films made of nanofibrils were modified by adsorption of a cationic surfactant directly on the film surfaces. The nanofibrils were prepared by 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation and mechanical fibrillation, and were relatively homogeneous in size. The average nanofibril diameter and surface porosity was quantified based on computer-assisted field-emission scanning electron microscopy (FE-SEM). The cationic surfactant used in the adsorption was n-hexadecyl trimethylammonium bromide (cetyltrimethylammonium bromide, CTAB). The adsorption of CTAB was confirmed by Fourier transform infrared (FTIR) spectroscopy and high-resolution transmission electron microscopy (HRTEM) analyses. It was shown that the adsorbed layer of CTAB increased the hydrophobicity, without affecting the tensile index significantly. This capability, combined with the antiseptic properties of CTAB, may be a major advantage for several applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278

    Article  CAS  Google Scholar 

  • Alila S, Boufi S, Belgacem MN, Benevente D (2005) Adsorption of a cationic surfactant onto cellulosic fibers I. Surface charge effects. Langmuir 21:8106–8113

    Article  CAS  Google Scholar 

  • Andresen M, Johansson L-S, Tanem BS, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–667

    Article  CAS  Google Scholar 

  • Brown RM Jr, Saxena IM (2000) Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiol Biochem 38(1/2):57–67

    Article  CAS  Google Scholar 

  • Chinga G, Solheim O, Mörseburg K (2007) Cross-sectional dimensions of fiber and pore networks based on Euclidean distance maps. Nord Pulp Pap Res J 22(4):500–507

    Article  CAS  Google Scholar 

  • Chinga-Carrasco G, Syverud K (2009) Computer-assisted quantification of the multi-scale structure of films made of nanofibrillated cellulose. J Nanopart Res. doi:10.1007/s11051-009-9710-2

  • Denyer SP, Hugo WB (1977) The mode of action of tetradecyltrimethyl ammonium bromide (CTAB) on Staphylococcus aureus. Pharm Pharmacol 29:66

    Google Scholar 

  • Egerton RF, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35(6):399–409

    Article  CAS  Google Scholar 

  • Emons AMC (1988) Methods for visualizing cell wall structure. Acta Bot Neerl 37(1):31–38

    Google Scholar 

  • Eriksen Ø, Syverud K, Gregersen Ø (2008) The use of microfibrillated cellulose produced from kraft pulp as a strength enhancer in TMP paper. Nord Pulp Pap Res J 23(3):299–304

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    Article  CAS  Google Scholar 

  • Furst EM, Pagnac ES, Tilton RD (1996) Coadsorption of polysine and the cationic surfactant cetylmethylammonium bromide on silica. Ind Eng Chem Res 35:1566–1574

    Article  CAS  Google Scholar 

  • Gran G (1952) Determination of the equivalence point in potentiometric titrations. II. Analyst 77:661–671

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci, Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Iwatake A, Nogi M, Yano H (2008) Cellulose nanofiber-reinforced polylactic acid. Compos Sci Technol 68(9):2103–2106

    Article  CAS  Google Scholar 

  • Kennedy CJ, Cameron GJ, Šturcová A, Apperley DC, Altaner C, Wess TJ, Jarvis MC (2007) Microfibril diameter in celery collenchyma cellulose: X-ray scattering and NMR evidence. Cellulose 14:235–246

    Article  CAS  Google Scholar 

  • Krässig HA (1993) Cellulose. Structure, accessibility and reactivity. In: Polymer monographs, vol 11. Gordon and Breach Science Publishers, Singapore, pp 19–30

  • McDonell G, Russel AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12(1):147–179

    Google Scholar 

  • Mörseburg K, Chinga-Carrasco G (2009) Assessing the combined benefits of clay and nanofibrillated cellulose in layered TMP-based sheets. Cellulose 16(5):795–806

    Article  Google Scholar 

  • Ohad I, Danon D (1964) On the dimensions of cellulose microfibrils. J Cell Biol 22(1):302–305

    Article  CAS  Google Scholar 

  • Pääkkö M, Ankefors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  Google Scholar 

  • Paria S, Khilar KC (2004) A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Adv Colloid Interface Sci 110:75–95

    Article  CAS  Google Scholar 

  • Rasband WS (1997) ImageJ. U.S. National Institutes of Health, Bethesda, USA. http://rsb.info.nih.gov/ij/

  • Rossotti FJC, Rossotti H (1965) Potentiometric titrations using Gran plots: a textbook omission. J Chem Educ 42(7):375–378

    Article  CAS  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5(5):1983–1989

    Article  CAS  Google Scholar 

  • Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691

    Article  CAS  Google Scholar 

  • Salton MRJ (1951) The adsorption of cetyltrimethylammonium bromide by bacteria, its action in releasing cellular constituents and its bactericidal effects. J Gen Microbiol 5:391–404

    CAS  Google Scholar 

  • Schmid M (2008) MaximumFinder. http://rsb.info.nih.gov/ij/developer/source/index.html

  • Seydibeyoglu MÖ, Oksman K (2008) Novel nanocomposites based on polyurethane and micro fibrillated cellulose. Compos Technol 68:908–914

    Article  Google Scholar 

  • Stenstad P, Andresen M, Tanem BS, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15:35–45

    Article  CAS  Google Scholar 

  • Sugiyama J, Harada H, Fujiyoshi Y, Uyeda N (1985) Lattice images from ultrathin sections of cellulose microfibrils in the cell wall of Valonia macrophysa Kütz. Planta 166:161–168

    Article  Google Scholar 

  • Sui ZM, Chen X, Wang LY, Xu LM, Zhuang WC, Chai YC, Yang CJ (2006) Capping effect of CTAB on positively charged Ag nanoparticles. Physica E 33:308–314

    Article  CAS  Google Scholar 

  • Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16(1):75–85

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci, Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankefors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795

    Article  Google Scholar 

  • Walter J (2007) FFT-filter. http://rsb.info.nih.gov/ij/plugins/fft-filter.html

  • Young IT, Gerbrands JJ, van Vliet LJ (1998) Fundamentals of image processing. Delft University of Technology, The Netherlands, ISBN 90-75691-01-7

Download references

Acknowledgments

The authors thank Anne Reitan and Eva Kvernes Rygg (PFI AS) for skilful assistance during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Syverud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syverud, K., Xhanari, K., Chinga-Carrasco, G. et al. Films made of cellulose nanofibrils: surface modification by adsorption of a cationic surfactant and characterization by computer-assisted electron microscopy. J Nanopart Res 13, 773–782 (2011). https://doi.org/10.1007/s11051-010-0077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0077-1

Keywords

Navigation