Skip to main content

Advertisement

Log in

Facile manufacture of cellulose nanoparticles in high yields by efficient cleavage of hydrogen bonds via mechanochemical synergy

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The use of bamboo for the fabrication of cellulose nanoparticles (CNs) in a facile and mild process is limited because of the existence of strong hydrogen bonding between the cellulose chains. Inspired by the synergistic effects of mechanochemistry, efficient cleavage of the strong hydrogen bonds and green manufacture of CNs with a high yield of 90.8% were realized through a shearing-assisted solvent pretreatment and a subsequent mechanochemical synergy process. In the one-pot tandem reaction, chemical action, thermodynamic interaction, and mechanical force induced by mechanochemistry created synergy to accelerate the dissociation of hydrogen bonds and ultimately regulate the disintegration of cellulose into nanofibers. The CNs showed special granular morphology and cellulose II crystal form. This method of process intensification diminished laborious intermediate purification steps and improved effectively the reaction efficiency. Thus, the study provides a facile and green approach for the large-scale production of CNs, and is expected to carry significant benefits in terms of economy and sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues-wheat straw and soy hulls. Bioresour Technol 99:1664–1671

    Article  CAS  PubMed  Google Scholar 

  • Amarasekara AS, Ebede CC (2009) Zinc chloride mediated degradation of cellulose at 200°C and identification of the products. Bioresour Technol 100:5301–5304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azubuike CP, Rodríguez H, Okhamafe AO, Rogers RD (2012) Physicochemical properties of maize cob cellulose powders reconstituted from ionic liquid solution. Cellulose 19:425–433

    Article  CAS  Google Scholar 

  • Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han CC, Kuga S (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351

    Article  CAS  Google Scholar 

  • Domingues AA, Pereira FV, Sierakowski MR, Rojas OJ, Petri DFS (2016) Interfacial properties of cellulose nanoparticles obtained from acid and enzymatic hydrolysis of cellulose. Cellulose 23:2421–2437

    Article  CAS  Google Scholar 

  • Domvoglou D, Wortmann F, Taylor J, Ibbett R (2010) Controlled accessibility Lewis acid catalysed thermal reactions of regenerated cellulosic fibres. Cellulose 17:757–770

    Article  CAS  Google Scholar 

  • Elazzouzihafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromol 9:57–65

    Article  CAS  Google Scholar 

  • Fischer S, Leipner H, Thümmler K, Brendler E, Peters J (2003) Inorganic molten salts as solvents for cellulose. Cellulose 10:227–236

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Gavillon R, Budtova T (2007) Kinetics of cellulose regeneration from cellulose-NaOH-water gels and comparison with cellulose-N-methylmorpholine-N-oxide-water solutions. Biomacromol 8:424–432

    Article  CAS  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  PubMed  Google Scholar 

  • Han J, Zhou C, French AD, Han G, Wu Q (2013) Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 94:773–781

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Jiang F, Hsieh YL (2015) 1D lignin-based solid acid catalysts for cellulose hydrolysis to glucose and nanocellulose. ACS Sustain Chem Eng 3:2566–2574

    Article  CAS  Google Scholar 

  • Isobe N, Kimura S, Wada M, Kuga S (2012) Mechanism of cellulose gelation from aqueous alkali-urea solution. Carbohydr Polym 89:1298–1300

    Article  CAS  PubMed  Google Scholar 

  • Isogai A, Atalla RH (1991) Amorphous celluloses stable in aqueous media: Regeneration from SO2-amine solvent systems. J Polym Sci, Part A: Polym Chem 29:113–119

    Article  CAS  Google Scholar 

  • Isogai A, Bergström L (2018) Preparation of cellulose nanofibers using green and sustainable chemistry. Curr Opin Green Sustain Chem 12:15–21

    Article  Google Scholar 

  • Li Y, Liu Y, Chen W, Wang Q, Liu Y, Li J, Yu H (2016) Facile extraction of cellulose nanocrystals from wood using ethanol and peroxide solvothermal pretreatment followed by ultrasonic nanofibrillation. Green Chem 18:1010–1018

    Article  CAS  Google Scholar 

  • Liu Y, Chen W, Xia Q, Guo B, Wang Q, Liu S, Liu Y, Li J, Yu H (2017) Efficient cleavage of lignin-carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent. Chemsuschem 10:1692–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Shen X (2011) Solubility of bacteria cellulose in zinc chloride aqueous solutions. Carbohydr Polym 86:239–244

    Article  CAS  Google Scholar 

  • Lu Q, Tang L, Wang S, Huang B, Chen Y, Chen X (2014) An investigation on the characteristics of cellulose nanocrystals from Pennisetum sinese. Biomass Bioenergy 70:267–272

    Article  CAS  Google Scholar 

  • Lu Q, Cai Z, Lin F, Tang L, Wang S, Huang B (2016) Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS Sustain Chem Eng 4:2165–2172

    Article  CAS  Google Scholar 

  • Mansikkamäki P, Lahtinen M, Rissanen K (2005) Structural changes of cellulose crystallites induced by mercerisation in different solvent systems; determined by powder X-ray diffraction method. Cellulose 12:233–242

    Article  CAS  Google Scholar 

  • Medronho B, Lindman B (2015) Brief overview on cellulose dissolution/regeneration interactions and mechanisms. Adv Colloid Interface Sci 222:502–508

    Article  CAS  PubMed  Google Scholar 

  • Meyabadi TF, Dadashian F, Sadeghi GMM, Asl HEZ (2014) Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technol 261:232–240

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  CAS  PubMed  Google Scholar 

  • Pang J, Liu X, Zhang X, Wu Y, Sun R (2013) Fabrication of cellulose film with enhanced mechanical properties in ionic liquid 1-allyl-3-methylimidaxolium chloride (AmimCl). Materials 6:1270–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki M, Adschiri T, Arai K (2003) Production of cellulose II from native cellulose by near- and supercritical water solubilization. J Agric Food Chem 51:5376–5381

    Article  CAS  PubMed  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) an empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Sen S, Losey BP, Gordon EE, Argyropoulos DS, Martin JD (2016) Ionic liquid character of zinc chloride hydrates define solvent characteristics that afford the solubility of cellulose. J Phys Chem B 120:1134–1141

    Article  CAS  PubMed  Google Scholar 

  • Tan XY, Hamid SBA, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenergy 81:584–591

    Article  CAS  Google Scholar 

  • Tang Y, Yang S, Zhang N, Zhang J (2014) Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis. Cellulose 21:335–346

    Article  CAS  Google Scholar 

  • Tang Y, Shen X, Zhang J, Guo D, Kong F, Zhang N (2015) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydr Polym 125:360–366

    Article  CAS  PubMed  Google Scholar 

  • Tischer PCSF, Sierakowski MR, Westfahl H, Tischer CA (2010) Nanostructural reorganization of bacterial cellulose by ultrasonic treatment. Biomacromol 11:1217–1224

    Article  CAS  Google Scholar 

  • Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48:3486–3493

    Article  CAS  Google Scholar 

  • Wang N, Ding E, Cheng R (2008) Preparation and liquid crystalline properties of spherical cellulose nanocrystals. Langmuir 24:5–8

    Article  CAS  PubMed  Google Scholar 

  • Xu A, Wang J, Wang H (2010) Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green Chem 12:268–275

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Talent Introduction Program of Minjiang University (Grant No. MJY18010), Open Project Program of Fujian Key Laboratory of Novel Functional Textile Fibers and Materials (Grant No. FKLTFM1803) and Fujian Province Young Teacher Education Research Project (Grant No. JT180389).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Lu, L., Li, Y. et al. Facile manufacture of cellulose nanoparticles in high yields by efficient cleavage of hydrogen bonds via mechanochemical synergy. Cellulose 26, 7741–7751 (2019). https://doi.org/10.1007/s10570-019-02647-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02647-y

Keywords

Navigation