Skip to main content
Log in

Kinetics of degradation of non-recycled and recycled contemporary paper

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Paper is still regarded as the most common carrier of information. Encouraged by environmental policies, the papermaking technology recently changed, resulting in an increased production of recycled paper. Two types of contemporary paper, non-recycled and recycled, were thus investigated to evaluate possible differences in their rate of degradation. The analyses were carried out using unaged paper to evaluate acidity, dry matter and ash content, lignin presence, and fibre furnish. Accelerated ageing experiments were performed at different temperatures (50–80 °C) and water vapour pressures (90.5–227.5 torr). Viscometric measurements were carried out to evaluate the extent of paper degradation as a function of time, upon various accelerated ageing conditions. The results indicate that the rates of degradation follow first-order kinetics with respect to scission of glycosidic bonds, the rate constants for recycled paper being found to be slightly higher than the corresponding constants for non-recycled paper, but comparable within experimental limits. The kinetic constants did not display a monotonic trend with increasing water vapour pressures. The Arrhenius dependence of the rate constants on temperature for both kinds of paper supplied the activation energies, which fall in the typical range expected for paper degradation. Finally, the measured rate constants fit fairly well the recently modelled dose–response function for historic paper. Colour changes were found to be visible to the human eye for samples aged for more than 40 days at 60, 70 and 80 °C.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Area MC, Cheradame H (2011) Paper aging and degradation: recent findings and research methods. BioResources 6:5307–5337. https://doi.org/10.15376/biores.6.4.5307-5337

    Article  CAS  Google Scholar 

  • Ashley-Smith J, Derbyshire A, Pretzel B (2002) The continuing development of a practical lighting policy for works of art on paper and other object types at the Victoria and Albert Museum, in 13th triennial meeting ICOM Committee for conservation. Rio de Janeiro I:3–8

    Google Scholar 

  • Barański A, Konieczna-Molenda A, Łagan J, Proniewicz L (2003) Catastrophic room temperature degradation of cotton cellulose. Restaurator 24:36–45. https://doi.org/10.1515/REST.2003.36

    Article  Google Scholar 

  • Barański A, Łagan JM, Łojewski T (2005) Acid-catalysed degradation. In: Strlič M, Kolar J (eds) Ageing and stabilisation of paper. National and University Library, Ljubljana, pp 85–100

    Google Scholar 

  • Bicchieri M, Monti M, Piantanida G, Sodo A (2016) Effects of gamma irradiation on deteriorated paper. Radiat Phys Chem 125:21–26. https://doi.org/10.1016/j.radphyschem.2016.03.005

    Article  CAS  Google Scholar 

  • Čabalová I, Kačík F, Gojný J, Češek B, Milichovský M, Mikala O, Tribulová T, Ďurkovič J (2017) Changes in the chemical and physical properties of paper documents due to natural ageing. BioResources 12:2618–2634. https://doi.org/10.15376/biores.12.2.2618-2634

    Article  CAS  Google Scholar 

  • Castro K, Princi E, Proietti N, Manso M, Capitani D, Vicini S, Madariaga JM, De Carvalho ML (2011) Assessment of the weathering effects on cellulose based materials through a multianalytical approach. Nucl Instrum Methods Phys Res B 269:1401–1410. https://doi.org/10.1016/j.nimb.2011.03.027

    Article  CAS  Google Scholar 

  • Dupont A-L, Mortha G (2004) Comparative evaluation of size-exclusion chromatography and viscometry for the characterisation of cellulose. J Chromatogr A 1026:129–141. https://doi.org/10.1016/j.chroma.2003.11.002

    Article  CAS  PubMed  Google Scholar 

  • Ekenstam A (1936) Über das Verhalten der Cellulose in Mineralsäure-lösungen, II. Mitteil: kinetisches Studium des abbaus der Cellulose in Säure-lösungen. Ber Dtsch Chem Ges 69:553–559

    Article  Google Scholar 

  • Emsley AM, Stevens GC (1994) Kinetics and mechanisms of the low-temperature degradation of cellulose. Cellulose 1:26–56. https://doi.org/10.1007/BF00818797

    Article  CAS  Google Scholar 

  • Emsley AM, Ali M, Heywood RJ (2000) A size exclusion chromatography study of cellulose degradation. Polymer 41:8513–8521. https://doi.org/10.1016/S0032-3861(00)00243-3

    Article  CAS  Google Scholar 

  • Evans R, Wallis A (1987) Comparison of cellulose molecular weights determined by high performance size exclusion chromatography and viscometry. In: Fourth international symposium on wood and pulping chemistry, Paris

  • Fedrigoni (2018a) http://www.fedrigoni.co.uk/papers/arcoprint-1-ew. Accessed 24 Jan 2018

  • Fedrigoni (2018b) http://www.fedrigoni.co.uk/papers/woodstock. Accessed 24 Jan 2018

  • Flory P (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, pp 266–316

    Google Scholar 

  • Forney CF, Brandl DG (1992) Control of humidity in small controlled-environment chambers using glycerol–water solutions. HortTechnology 2:52–54

    Google Scholar 

  • Glycerine Producers’ Association (1963) Physical properties of glycerine and its solutions. Glycerine Producers’ Association, London

    Google Scholar 

  • Hardeberg JY (2001) Acquisition and reproduction of colour images: colourimetric and multispectral approaches. Dissertation.com, USA

  • Hart PW, Santos RB (2013) Kraft ECF pulp bleaching: a review of the development and use of techno-economic models to optimize cost performance and justify capital expenditures. Tappi J 12:19–29

    CAS  Google Scholar 

  • Ilvessalo-Pfäffli M (1995) Fiber atlas: identification of papermaking fibers. Springer, Berlin

    Book  Google Scholar 

  • ISO 9184-3 (1990) Paper, board and pulps—Fibre furnish analysis—Part 3: Herzberg staining test

  • ISO 5351 (2010) Pulps—determination of limiting viscosity number in cupriethylenediamine (CED) solution

  • ISO 5631-2 (2015) Paper and board—determination of colour by diffuse reflectance—part 2: outdoor daylight conditions (D65/10°)

  • ISO 2144 (2015) Paper, board and pulps—Determination of residue (ash) on ignition at 900 °C

  • ISO/CIE 11664-6 (2014) Colorimetry—Part 6: CIEDE2000 colour-difference formula

  • Kačík F, Kačíková D, Jablonský M, Katuščák S (2009) Cellulose degradation in newsprint paper ageing. Polym Degrad Stabil 94:1509–1514. https://doi.org/10.1016/j.polymdegradstab.2009.04.033

    Article  CAS  Google Scholar 

  • Kočar D, Strlič M, Kolar J, Rychlý J, Matisová-Rychlá L, Pihlar B (2005) Chemiluminescence from paper III: the effect of superoxide anion and water. Polym Degrad Stabil 88:407–414. https://doi.org/10.1016/j.polymdegradstab.2004.12.005

    Article  CAS  Google Scholar 

  • Liu Y, Kralj Cigić I, Strlič M (2017) Kinetics of accelerated degradation of historic iron gall ink-containing paper. Polym Degrad Stabil 42:255–262. https://doi.org/10.1016/j.polymdegradstab.2017.07.010

    Article  CAS  Google Scholar 

  • Łojewski T, Zięba K, Knapik A, Bagniuk J, Lubańska A, Łojewska J (2010a) Evaluating paper degradation progress. Cross-linking between chromatographic, spectroscopic and chemical results. Appl Phys A 100:809–821. https://doi.org/10.1007/s00339-010-5657-5

    Article  CAS  Google Scholar 

  • Łojewski T, Zięba K, Łojewska J (2010b) Size exclusion chromatography and viscometry in paper degradation studies. New Mark–Houwink coefficients for cellulose in cupri-ethylenediamine. J Chromatogr A 1217:6462–6468. https://doi.org/10.1016/j.chroma.2010.07.071

    Article  CAS  PubMed  Google Scholar 

  • Łojewski T, Zięba K, Kołodziej A, Łojewska J (2011) Following cellulose depolymerization in paper: comparison of size exclusion chromatography techniques. Cellulose 18:1349–1363. https://doi.org/10.1007/s10570-011-9562-7

    Article  CAS  Google Scholar 

  • Mahy M, Eycken L, Oosterlinck A (1994) Evaluation of uniform color spaces developed after the adoption of CIELAB and CIELUV. Color Res Appl 19:105–121. https://doi.org/10.1111/j.1520-6378.1994.tb00070.x

    Article  Google Scholar 

  • Menart E, de Bruin G, Strlič M (2011) Dose-response functions for historic paper. Polym Degrad Stabil 96:2029–2039. https://doi.org/10.1016/j.polymdegradstab.2011.09.002

    Article  CAS  Google Scholar 

  • Mosca Conte A, Pulci O, Knapik A, Bagniuk J, Del Sole R, Łojewska J, Missori M (2012) Role of cellulose oxidation in the yellowing of ancient paper. Phys Rev Lett 108:158301/1-5. https://doi.org/10.1103/PhysRevLett.108.158301

    Article  CAS  Google Scholar 

  • Nevell TP, Zeronian SH (1985) Cellulose chemistry and its applications. Ellis Hordwood Ltd, Chichester

    Google Scholar 

  • Paltakari JT, Karlsson MA (1996) Determination of specific heat for dry fibre material. In: 82nd annual meeting, technical section, CPPA, pp B117–B120

  • Porck HJ (2000) Rate of paper degradation—the predictive value of artificial aging tests. European Commission on Preservation and Access, Amsterdam

    Google Scholar 

  • Roberts JC (1996) The chemistry of paper. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Rouchon V, Belhad O, Duranto M, Gimat A, Massiani P (2016) Application of Arrhenius law to DP and zero-span tensile strength measurements taken on iron gall ink impregnated papers: relevance of artificial ageing protocols. Appl Phys A 122:773/1-10. https://doi.org/10.1007/s00339-016-0307-1

    Article  CAS  Google Scholar 

  • Seth RS (1990) Fibre quality factors in papermaking. In: Caulfield DF, Passaretti JD, Sobczynski SF (eds) Material interactions relevant to the pulp, paper and wood industries. Materials Research Society, San Francisco, pp 125–142

    Google Scholar 

  • Sharma G, Wu W, Dalal EN (2005a) Supplemental test data and excel and matlab implementations of the CIEDE2000 color difference formula. http://www2.ece.rochester.edu/~gsharma/ciede2000/. Accessed 5 June 2018

  • Sharma G, Wu W, Dalal EN (2005b) The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations. Color Res Appl 30:21–30. https://doi.org/10.1002/col.20070

    Article  Google Scholar 

  • Strang T, Grattan D (2009) Temperature and Humidity considerations for the preservation of organic collections—the isoperm revisited. e-Preservation Science 6:122–128

    Google Scholar 

  • Strlič M, Kolar J (2003) Size exclusion chromatography of cellulose in LiCl/N, N-dimethylacetamide. J Biochem Biophys Methods 56:265–279. https://doi.org/10.1016/S0165-022X(03)00064-2

    Article  CAS  PubMed  Google Scholar 

  • Strlič M, Kolar J, Žigon M, Pihlar B (1998) Evaluation of size-exclusion chromatography and viscometry for the determination of molecular masses of oxidised cellulose. J Chromatogr A 805:93–99. https://doi.org/10.1016/S0021-9673(98)00008-9

    Article  Google Scholar 

  • Strlič M, Kolar J, Kočar D, Drnovšek T, Šelih VS, Susič R, Pihlar B (2004) What is the pH of alkaline paper? e-Preservation Science 1:35–47

    Google Scholar 

  • Strlič M, Kolar J, Scholten S (2005a) Paper and durability. In: Strlič M, Kolar J (eds) Ageing and stabilisation of paper. National and University Library, Ljubljana, pp 3–8

    Google Scholar 

  • Strlič M, Kolar J, Scholten S (2005b) Methodology and analytical techniques in paper stability studies. In: Strlič M, Kolar J (eds) Ageing and stabilisation of paper. National and University Library, Ljubljana, pp 25–44

    Google Scholar 

  • Strlič M, Kralj Cigić I, Kolar J, De Bruin G, Pihlar B (2007) Non-destructive evaluation of historical paper based on pH estimation from VOC emissions. Sensors 7:3136–3145. https://doi.org/10.3390/s7123136

    Article  PubMed  Google Scholar 

  • Strlič M, Kralj Cigić I, Možir A, De Bruin G, Kolar J, Cassar M (2011) The effect of volatile organic compounds and hypoxia on paper degradation. Polym Degrad Stabil 96:608–615. https://doi.org/10.1016/j.polymdegradstab.2010.12.017

    Article  CAS  Google Scholar 

  • Strlič M, Grossi CM, Dillon C, Bell N, Fouseki K, Brimblecombe P, Menart E, Ntanos K, Lindsay W, Thickett D, France F, De Bruin G (2015) Damage function for historic paper. Part III: isochrones and demography of collections. Heritage Science 3:40. https://doi.org/10.1186/s40494-015-0069-7

    Article  CAS  Google Scholar 

  • TAPPI T 401 om-82 (1982) Test method: fiber analysis of paper and paperboard

  • Tanford C (1961) Physical chemistry of macromolecules. Wiley, NY, pp 390–412

    Google Scholar 

  • Zervos S (2010) Natural and accelerated ageing of cellulose and paper: a literature review. In: Lejeune A, Deprez T (eds) Cellulose: structure and properties, derivatives and industrial uses. Nova Science Publishers, New York, pp 155–203

    Google Scholar 

  • Zou X, Uesaka T, Gurnagul N (1996) Prediction of paper permanence by accelerated aging I. Kinetic analysis of the aging process. Cellulose 3:243–267. https://doi.org/10.1007/BF02228805

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Italian Ministero dell’Istruzione, dell’Università e della Ricerca for financial support. Thanks are due to Dr. Irena Kralj Cigić (University of Ljubljana) for ash content measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Floriana Coppola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coppola, F., Modelli, A., Strlič, M. et al. Kinetics of degradation of non-recycled and recycled contemporary paper. Cellulose 25, 5337–5347 (2018). https://doi.org/10.1007/s10570-018-1951-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1951-8

Keywords

Navigation