Skip to main content
Log in

Application of Arrhenius law to DP and zero-span tensile strength measurements taken on iron gall ink impregnated papers: relevance of artificial ageing protocols

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Iron gall inks (IGI) were largely used for writing until the nineteenth century. Under certain circumstances, they provoke a substantial degradation of their cellulosic support. It was shown in a previous works that combination of oxygen and iron largely impacts cellulose chain breaking occurring in acidic conditions (pH 3–4). The present study aims to study the kinetic of this degradation. It assesses the validity of Arrhenius law between 20 and 90 °C taking advantage of the fast depolymerization of IGI impregnated papers at room temperature and using two complementary tools: DP measurements and zero-span tensile strength. The first one is sensitive enough to measure degradation at its very beginning, while the second is more appropriate for advanced stage of degradation. Similar activation energies (97 ± 2 kJ mol−1) were found via DP and zero-span measurements, and reaction rates of IGI impregnated papers were 1–2 orders of magnitude above available data related to lignin-free acidic papers. These observations suggest a dominant hydrolytic mechanism that involves directly or indirectly oxygen and iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Kolar, M. Strlic, (eds.), Iron Gall Inks: On Manufacture, Characterisation, Degradation and Stabilisation (National and University Library, Ljubljana. 2006)

  2. J. Gust, J. Suwalski, Corrosion. 50, 355 (1994)

    Article  Google Scholar 

  3. C. Krekel, Int. J. Forensic Doc. Exam. 5, 54 (1999)

    Google Scholar 

  4. C.H. Wunderlich, R. Weber, G. Bergerhoff, Zeitschrift für Anorganische und Allgemeine Chemie. 598/599, 371 (1991)

  5. A. Kongdee, T. Bechtold, Cellulose 16, 53 (2009)

    Article  Google Scholar 

  6. C. Burgaud, V. Rouchon, A. Wattiaux, J. Bleton, R. Sabot, P. Refait, J. Electroanal. Chem. 650, 16 (2010)

    Article  Google Scholar 

  7. J.G. Neevel, Restaurator. 16, 143 (1995)

    Google Scholar 

  8. M. Strlic, J. Kolar, (eds.), Ageing and Stabilisation of Paper (National and University Library, Ljubljana. 2005)

  9. P. Calvini, Cellulose 12, 445 (2005)

    Article  Google Scholar 

  10. S. Zervos, in Cellulose: Structure and Properties, Derivatives and Industrial Uses, ed. by A. Lejeune and T. Deprez (Nova Science, 2010), p. 155–203

  11. F. Shafizadeh, A.G.W. Bradbury, J. Appl. Polym. Sci. 23, 1431 (1979)

    Article  Google Scholar 

  12. A.M. Emsley, G.C. Stevens, Cellulose 1, 26 (1994)

    Article  Google Scholar 

  13. E.H. Daruwalla, M.G. Narsian, Tappi J. 49, 106 (1966)

    Google Scholar 

  14. X. Zou, T. Uesaka, N. Gurnagul, Cellulose 3, 243 (1996)

    Article  Google Scholar 

  15. P.L. Bégin, E. Kaminska, Restaurator. 23, 89 (2002)

    Google Scholar 

  16. J. Shahani, S.B. Lee, F.H. Hengemihle, G. Harrison, P. Song, Accelerated Aging of Paper. I: Chemical Analysis of Degradation Products, II: Application of Arrhenius Relationship, III: Proposal for a new Accelerated Aging Test, ASTM research Program, Library of Congress, Washington, 2001

  17. E. Kaminska, P. Bégin, D. Grattan, D. Woods, A. Bülow, Accelerated aging test method development for American Society for Testing and Materials Institute for Standards Research, ASTM Research Program, Canadian Conservation Institute, Otawa, 2001

  18. J. M. Reilly, D. W. Nishimura, E. Zinn, New tools for preservation: assessing long-term environmental effects on library and archives collections (Commission of Preservation and Access, Washington, 1995), www.clir.org/pubs/reports/pub59/pub59.pdf. Accessed 15 July 2015

  19. Standard BSI PAS 198 (2012)

  20. X. Zou, T. Uesaka, N. Gurnagul, Cellulose 3, 269 (1996)

    Article  Google Scholar 

  21. D. Kocar, M. Strlic, J. Kolar, J. Rychly, L. Matisova-Rychla, B. Pihlar, Polym. Degrad. Stabil. 88, 407 (2005)

    Article  Google Scholar 

  22. M. Strilic, J. Kolar, (eds.), Ageing and Stabilisation of Paper (National and University Library, Ljubjana. 2005)

  23. J. Kolar, A. Stolfa, M. Strilic, M. Pompe, B. Pihlar, M. Budnar, J. Simcic, B. Reissland, Anal. Chim. Acta. 555, (2006). doi:10.1016/j.aca.2005.08.073

  24. V.S. Selih, M. Strlic, J. Kolar, B. Pihlar, Polym. Degrad. Stabil. 92, 1476 (2007)

    Article  Google Scholar 

  25. M. Strlic, J. Kolar, B. Pihlar, Polym. Degrad. Stabil. 73, 535 (2001)

    Article  Google Scholar 

  26. V. Rouchon, M. Duranton, C. Burgaud, E. Pellizzi, B. Lavedrine, K. Janssens, W. de Nolf, G. Nuyts, F. Vanmeert, K. Hellemans, Anal. Chem. 83, 2589 (2011)

    Article  Google Scholar 

  27. Standart ISO 535 (2014)

  28. Standart ISO 17812 (2007)

  29. Standard ISO 6588-1 (2005)

  30. T. Sawoszczuk, A. Baranski, J.M. Lagan, T. Lojewski, K. Zieba, J. Cult. Herit. 9, 401 (2008)

    Article  Google Scholar 

  31. Standart ISO 5351 (2010)

  32. R. Evans, A.F.A. Wallis, in 4th International Symposium on Wood and Pulping Chemistry, Paris, Palais des Congrès, 27th–30th April 1987 (1987)

  33. J. Tetreault, A.L. Dupont, P. Begin, S. Paris, Polym. Degrad. Stabil. 98, 1827 (2013)

    Article  Google Scholar 

  34. Standard TAPPI T 231 cm-96 (1996)

  35. J. Rychly, M. Strlic, L. Matisova-Rychla, J. Kolar, Polym. Degrad. Stabil. 78, 357 (2002)

    Article  Google Scholar 

  36. P. Calvini, Cellulose 21, 1127 (2014)

    Article  Google Scholar 

  37. A.M. Emsley, Cellulose 15, 187 (2008)

    Article  Google Scholar 

  38. A.M. Emsley, Cellulose 15, 239 (2008)

    Article  Google Scholar 

  39. V. Rouchon, B. Durocher, E. Pellizzi, J. Stordiau-Pallot, Stud. Conserv. 54, 236 (2009)

    Article  Google Scholar 

  40. V. Rouchon, M. Duranton, O. Belhadj, M. Bastier Desroches, V. Duplat, C. Walbert, B. Vinther Hansen, Polym. Degrad. Stabil. 98, 1339 (2013)

  41. O. Belhadj, C. Phan Tan Luu, E. Jacobi, S. Meslet-Struyve, S. Vez, B. Reissland, V. Rouchon, J. Pap. Conserv. 15, 9 (2014)

  42. A.L. Dupont, Le patrimoine culturel sur papier: de la compréhension des processus d’altération à la conception de procédés de stabilisation, Chemical Sciences, Evry Val d’Essonne University, 85 p. (2014) https://tel.archives-ouvertes.fr/tel-01115774/document. Accessed 20th July 2015

  43. Y. Kwon, S.E.F. Kleijn, K.J.P. Schouten, M.T.M. Koper, ChemSusChem. 5, 1935 (2012)

    Article  Google Scholar 

  44. G. SriBala, R. Vinu, Ind. Eng. Chem. Res. 53, 8714 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by French state funds managed by the Ile de France Region (DIM Oxymore) and ANR within the “Investissements d’Avenir program” under reference ANR-11-IDEX-0004-02, and more specifically within the framework of the Cluster of Excellence MATISSE led by Sorbonne Universités.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Rouchon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouchon, V., Belhadj, O., Duranton, M. et al. Application of Arrhenius law to DP and zero-span tensile strength measurements taken on iron gall ink impregnated papers: relevance of artificial ageing protocols. Appl. Phys. A 122, 773 (2016). https://doi.org/10.1007/s00339-016-0307-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0307-1

Keywords

Navigation