Skip to main content
Log in

Esterified cellulose nanocrystals as reinforcement in poly(lactic acid) nanocomposites

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Biopolymers are of huge interest as they carry potential to minimize the environmental hazards caused by synthetic materials. Poly(lactic acid) (PLA) reinforced by cellulose nanocrystals (CNCs) has shown promising results. To obtain the optimum characteristics of PLA-CNC nanocomposites, a superior compatibility between PLA and CNCs is paramount. The application of chemical surface modification technique is an essential step to improve the interaction between hydrophilic CNCs and hydrophobic PLA. In this study, a time-efficient esterification technique using valeric acid was introduced to improve the compatibility between CNCs and PLA. Masterbatches were prepared using spin-coating method to ensure the maximum dispersion of CNCs through PLA and to decrease the drying time. Nanocomposites were prepared using extrusion and injection molding. The degree of substitution for modified CNCs was calculated as 0.35. Transmission electron microscopy exhibited esterified CNCs (e-CNCs) in the nanoscale with rod shape structure. Thermal stability improved by 15% in nanocomposites containing 3% e-CNCs, whereas untreated CNCs didn’t alter the thermal stability to a notable extent. A substantial increase of 200% was observed in crystallinity of nanocomposites reinforced with 3% e-CNCs. The incorporation of CNCs into PLA resulted in an increase in storage modulus and a decrease in tan δ intensity which was more profound in PLA-e-CNCs. The tensile strength of PLA-e-CNCs composites was found to be superior to composites reinforced with untreated CNCs. The results confirmed that a combination of time-efficient esterification and spin-coated masterbatch was a successful approach to uniformly disperse CNCs in PLA matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arrieta M, Fortunati E, Dominici F, Rayón E, López J, Kenny J (2014) Multifunctional PLA–PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohyd Polym 107:16–24

    Article  CAS  Google Scholar 

  • ASTM D (2008) 638-03: standard test method for tensile properties of plastics current edition approved Apr 1:1–16

  • ASTM (2011) D4812-11: Standard test method for unnotched cantilever beam impact resistance of plastics. ASTM International, West Conshohocken. https://doi.org/10.1520/D4812-11

    Book  Google Scholar 

  • Babu RP, O’connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14:617–630

    Article  CAS  Google Scholar 

  • Cetin NS, Tingaut P, Özmen N, Henry N, Harper D, Dadmun M, Sebe G (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9:997–1003

    Article  CAS  PubMed  Google Scholar 

  • de Castro DO, Bras J, Gandini A, Belgacem N (2016) Surface grafting of cellulose nanocrystals with natural antimicrobial rosin mixture using a green process. Carbohydr Polym 137:1–8

    Article  CAS  PubMed  Google Scholar 

  • de la Motte H, Hasani M, Brelid H, Westman G (2011) Molecular characterization of hydrolyzed cationized nanocrystalline cellulose, cotton cellulose and softwood kraft pulp using high resolution 1D and 2D NMR. Carbohydr Polym 85:738–746

    Article  CAS  Google Scholar 

  • Di Y, Iannace S, Maio ED, Nicolais L (2005) Poly (lactic acid)/organoclay nanocomposites: thermal, rheological properties and foam processing. J Polym Sci Part B Polym Phys 43:689–698

    Article  CAS  Google Scholar 

  • Dong L-L, He L, Tao G-H, Hu C (2013) High yield of ethyl valerate from the esterification of renewable valeric acid catalyzed by amino acid ionic liquids RSC. Advances 3:4806–4813

    CAS  Google Scholar 

  • Du Y, Wu T, Yan N, Kortschot MT, Farnood R (2014) Fabrication and characterization of fully biodegradable natural fiber-reinforced poly (lactic acid) composites. Compos B Eng 56:717–723

    Article  CAS  Google Scholar 

  • Du W, Guo J, Li H, Gao Y (2017) Heterogeneously modified cellulose nanocrystals-stabilized pickering emulsion: preparation and their template application for the creation of PS microspheres with amino-rich surfaces. ACS Sustain Chem Eng 5:7514–7523

    Article  CAS  Google Scholar 

  • Fortunati E et al (2012a) Multifunctional bionanocomposite films of poly (lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605

    Article  CAS  Google Scholar 

  • Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny J (2012b) Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stab 97:2027–2036

    Article  CAS  Google Scholar 

  • Fraschini C, Chauve G, Bouchard J (2017) TEMPO-mediated surface oxidation of cellulose nanocrystals (CNCs). Cellulose 24:1–16

    Article  CAS  Google Scholar 

  • George J, Sabapathi S (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gojny FH, Wichmann MH, Fiedler B, Schulte K (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Compos Sci Technol 65:2300–2313

    Article  CAS  Google Scholar 

  • Gupta A, Simmons W, Schueneman GT, Mintz EA (2016) Lignin-coated cellulose nanocrystals as promising nucleating agent for poly (lactic acid). J Therm Anal Calorim 126:1243–1251

    Article  CAS  Google Scholar 

  • Gupta A, Simmons W, Schueneman GT, Hylton D, Mintz EA (2017) Rheological and thermo-mechanical properties of poly (lactic acid)/lignin-coated cellulose nanocrystal composites. ACS Sustain Chem Eng 5:1711–1720

    Article  CAS  Google Scholar 

  • Halász K, Csóka L (2013) Plasticized biodegradable poly (lactic acid) based composites containing cellulose in micro-and nanosize. J Eng. https://doi.org/10.1155/2013/329379

  • Hoeng F, Denneulin A, Neuman C, Bras J (2015) Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation. J Nanopart Res 17:244

    Article  CAS  Google Scholar 

  • Hsu Y-I, Masutani K, Yamaoka T, Kimura Y (2015) Strengthening of hydrogels made from enantiomeric block copolymers of polylactide (PLA) and poly (ethylene glycol)(PEG) by the chain extending Diels-Alder reaction at the hydrophilic PEG terminals. Polymer 67:157–166

    Article  CAS  Google Scholar 

  • Jonoobi M, Harun J, Mathew AP, Oksman K (2010) Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos Sci Technol 70:1742–1747

    Article  CAS  Google Scholar 

  • Kedzior SA, Marway HS, Cranston ED (2017) Tailoring cellulose nanocrystal and surfactant behavior in miniemulsion polymerization. Macromolecules 50:2645–2655

    Article  CAS  Google Scholar 

  • Li Y, Shimizu H (2007) Toughening of polylactide by melt blending with a biodegradable poly (ether) urethane elastomer. Macromol Biosci 7:921–928

    Article  CAS  PubMed  Google Scholar 

  • Ng H-M, Sin LT, Bee S-T, Tee T-T, Rahmat A (2017) Review of nanocellulose polymer composite characteristics and challenges. Polym Plast Technol Eng 56:687–731

    Article  CAS  Google Scholar 

  • Organization WH (1997) Evaluations of the Joint FAO/WHO Expert Commitee on Food Additives (JECFA). Accessed 16 Feb 2018

  • Parit M (2016) Thermoplastic polymer nanocomposites. Master thesis, Chemical Eng Dept, Auburn University, Auburn, Alabama, United States

  • Paula EL, Mano V, Duek EAR, Pereira FV (2015) Hydrolytic degradation behavior of PLLA nanocomposites reinforced with modified cellulose nanocrystals. Quim Nova 38:1014–1020

    Google Scholar 

  • Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392

    Article  CAS  Google Scholar 

  • Peng SX, Chang H, Kumar S, Moon RJ, Youngblood JP (2016) A comparative guide to controlled hydrophobization of cellulose nanocrystals via surface esterification. Cellulose 23:1825–1846

    Article  CAS  Google Scholar 

  • Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly (lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67:2535–2544

    Article  CAS  Google Scholar 

  • Poletto M, Pistor V, Zattera AJ (2013) Structural characteristics and thermal properties of native cellulose. In: Van De Ven TGM (ed) Cellulose-fundamental aspects. InTech

  • Quero E, Müller AJ, Signori F, Coltelli MB, Bronco S (2012) Isothermal cold-crystallization of PLA/PBAT blends with and without the addition of acetyl tributyl citrate. Macromol Chem Phys 213:36–48

    Article  CAS  Google Scholar 

  • Raquez J-M, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38:1504–1542

    Article  CAS  Google Scholar 

  • Rasal RM, Janorkar AV, Hirt DE (2010) Poly (lactic acid) modifications. Prog Polym Sci 35:338–356

    Article  CAS  Google Scholar 

  • Rosilo H, Kontturi E, Seitsonen J, Kolehmainen E, Ikkala O (2013) Transition to reinforced state by percolating domains of intercalated brush-modified cellulose nanocrystals and poly (butadiene) in cross-linked composites based on thiol–ene click chemistry. Biomacromol 14:1547–1554

    Article  CAS  Google Scholar 

  • Sehaqui H, Zimmermann T, Tingaut P (2014) Hydrophobic cellulose nanopaper through a mild esterification procedure. Cellulose 21:367–382

    Article  CAS  Google Scholar 

  • Shojaeiarani J, Bajwa D, Stark N (2018a) Spin-coating: a new approach for improving dispersion of cellulose nanocrytals and mechanical properties of poly(lactic acid) composites. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2018.02.069

    Article  PubMed  Google Scholar 

  • Shojaeiarani J, Bajwa DS, Stark NM (2018b) Green esterification: a new approach to improve thermal and mechanical properties of poly(lactic acid) composites reinforced by cellulose nanocrystals. J Appl Polym Sci. https://doi.org/10.1002/app.46468

    Article  Google Scholar 

  • Singh S, Mohanty A (2007) Wood fiber reinforced bacterial bioplastic composites: fabrication and performance evaluation. Compos Sci Technol 67:1753–1763

    Article  CAS  Google Scholar 

  • Tang L, Huang B, Lu Q, Wang S, Ou W, Lin W, Chen X (2013) Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid. Biores Technol 127:100–105

    Article  CAS  Google Scholar 

  • Tingaut P, Zimmermann T, Sèbe G (2012) Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials. J Mater Chem 22:20105–20111

    Article  CAS  Google Scholar 

  • Wang N, Ding E, Cheng R (2007) Surface modification of cellulose nanocrystals. Front Chem Eng China 1:228–232

    Article  CAS  Google Scholar 

  • Yasuniwa M, Tsubakihara S, Sugimoto Y, Nakafuku C (2004) Thermal analysis of the double-melting behavior of poly (L-lactic acid). J Polym Sci Part B Polym Phys 42:25–32

    Article  CAS  Google Scholar 

  • Yildirim N, Shaler S (2017) A study on thermal and nanomechanical performance of cellulose nanomaterials (CNs). Materials 10:718

    Article  CAS  PubMed Central  Google Scholar 

  • Yu T, Ren J, Li S, Yuan H, Li Y (2010) Effect of fiber surface-treatments on the properties of poly (lactic acid)/ramie composites. Compos A Appl Sci Manuf 41:499–505

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge funding from the NSF- EPSCoR (Grant No. 11A1355466) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamileh Shojaeiarani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaeiarani, J., Bajwa, D.S. & Hartman, K. Esterified cellulose nanocrystals as reinforcement in poly(lactic acid) nanocomposites. Cellulose 26, 2349–2362 (2019). https://doi.org/10.1007/s10570-018-02237-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-02237-4

Keywords

Navigation