Skip to main content
Log in

Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Synthesis of silver nanoparticles using cellulose nanocrystals (CNC) has been found to be a great method for producing metallic particles in a sustainable way. In this work, we propose to evaluate the influence of the charge density of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO)-oxidized CNC on the morphology and the stability of synthetized silver nanoparticles. Silver nanoparticles were obtained by sol–gel reaction using borohydride reduction, and charge density of TEMPO-oxidized CNC was tuned by an amine grafting. The grafting was performed at room temperature and neutral pH. Crystallinity and morphology were kept intact during the peptidic reaction on CNC allowing knowing the exact impact of the charge density. Charge density has been found to have a strong impact on shape, organization, and suspension stability of resulting silver particles. Results show an easy way to tune the charge density of CNC and propose a sustainable way to control the morphology and stability of silver nanoparticles in aqueous suspension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Beck S, Bouchard J (2014) Auto-catalyzed acidic desulfation of cellulose nanocrystals. Nord Pulp Pap Res J 29(1):6–14

    Article  Google Scholar 

  • Beck S, Bouchard J, Berry R (2011) Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. Biomacromolecules 12:167–172. doi:10.1021/bm1010905

    Article  Google Scholar 

  • Boluk Y, Lahiji R, Zhao L, McDermott MT (2011) Suspension viscosities and shape parameter of cellulose nanocrystals (CNC). Colloids Surf A Physicochem Eng Aspects 377:297–303. doi:10.1016/j.colsurfa.2011.01.003

    Article  Google Scholar 

  • Bras J, Viet D, Bruzzese C, Dufresne A (2011) Correlation between stiffness of sheets prepared from cellulose whiskers and nanoparticles dimensions. Carbohydr Polym 84:211–215. doi:10.1016/j.carbpol.2010.11.022

    Article  Google Scholar 

  • Callegari A, Tonti D, Chergui M (2003) Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett 3:1565–1568. doi:10.1021/nl034757a

    Article  Google Scholar 

  • Campbell M, Liu Q, Sanders A et al (2014) Preparation of nanocomposite plasmonic films made from cellulose nanocrystals or mesoporous silica decorated with unidirectionally aligned gold nanorods. Materials 7:3021–3033. doi:10.3390/ma7043021

    Article  Google Scholar 

  • Cao X, Habibi Y, Lucia LA (2009) One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites. J Mater Chem 19:7137. doi:10.1039/b910517d

    Article  Google Scholar 

  • Da Silva Perez D, Montanari S, Vignon MR (2003) TEMPO-mediated oxidation of cellulose III. Biomacromolecules 4:1417–1425. doi:10.1021/bm034144s

    Article  Google Scholar 

  • Dagnon KL, Way AE, Carson SO et al (2013) Controlling the rate of water-induced switching in mechanically dynamic cellulose nanocrystal composites. Macromolecules 46:8203–8212. doi:10.1021/ma4008187

    Article  Google Scholar 

  • Dong S, Roman M (2007) Fluorescently labeled cellulose nanocrystals for bioimaging applications. J Am Chem Soc 129:13810–13811. doi:10.1021/ja076196l

    Article  Google Scholar 

  • Dong H, Snyder JF, Tran DT, Leadore JL (2013) Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles. Carbohydr Polym 95:760–767. doi:10.1016/j.carbpol.2013.03.041

    Article  Google Scholar 

  • Drogat N, Granet R, Sol V et al (2010) Antimicrobial silver nanoparticles generated on cellulose nanocrystals. J Nanopart Res 13:1557–1562. doi:10.1007/s11051-010-9995-1

    Article  Google Scholar 

  • Dufresne A(2012) Nanocellulose: from nature to high performance tailored materials. 460

  • Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303. doi:10.1039/c0sm00142b

    Article  Google Scholar 

  • Filpponen I, Argyropoulos DS (2010) Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromolecules 11:1060–1066. doi:10.1021/bm1000247

    Article  Google Scholar 

  • Follain N, Marais M-F, Montanari S, Vignon MR (2010) Coupling onto surface carboxylated cellulose nanocrystals. Polymer 51:5332–5344

    Article  Google Scholar 

  • García-Barrasa J, López-de-Luzuriaga JM, Monge M (2010) Silver nanoparticles: synthesis through chemical methods in solution and biomedical applications. Cent Eur J Chem 9:7–19. doi:10.2478/s11532-010-0124-x

    Article  Google Scholar 

  • Habibi Y, Chanzy H, Vignon MR (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13:679–687. doi:10.1007/s10570-006-9075-y

    Article  Google Scholar 

  • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500. doi:10.1021/cr900339w

    Article  Google Scholar 

  • Hemraz UD, Boluk Y, Sunasee R (2013) Amine-decorated nanocrystalline cellulose surfaces: synthesis, characterization, and surface properties. Can J Chem 91:974–981. doi:10.1139/cjc-2013-0165

    Article  Google Scholar 

  • Hoeng F, Denneulin A, Bras J, Neuman C (2014) Suspension stable de nanofils d'argent et son procédé de fabrication. Patent FR N°15/53131, 10 April 2014

  • Ifuku S, Tsuji M, Morimoto M et al (2009) Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers. Biomacromolecules 10:2714–2717

    Article  Google Scholar 

  • Jiang F, Esker AR, Roman M (2010) Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals. Langmuir 26:17919–17925. doi:10.1021/la1028405

    Article  Google Scholar 

  • Kanmani P, Lim ST (2013) Synthesis and characterization of pullulan-mediated silver nanoparticles and its antimicrobial activities. Carbohydr Polym 97:421–428. doi:10.1016/j.carbpol.2013.04.048

    Article  Google Scholar 

  • Koga H, Tokunaga E, Hidaka M et al (2010) Topochemical synthesis and catalysis of metal nanoparticles exposed on crystalline cellulose nanofibers. Chem Commun (Camb) 46:8567–8569. doi:10.1039/c0cc02754e

    Article  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764. doi:10.1016/j.carbpol.2012.05.026

    Article  Google Scholar 

  • Li Z, Taubert A (2009) Cellulose/gold nanocrystal hybrids via an ionic liquid/aqueous precipitation route. Molecules 14:4682–4688. doi:10.3390/molecules14114682

    Article  Google Scholar 

  • Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393. doi:10.1039/c3nr06761k

    Article  Google Scholar 

  • Liu H, Wang D, Song Z, Shang S (2010) Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization. Cellulose 18:67–74. doi:10.1007/s10570-010-9464-0

    Article  Google Scholar 

  • Liu H, Wang D, Shang S, Song Z (2011) Synthesis and characterization of Ag–Pd alloy nanoparticles/carboxylated cellulose nanocrystals nanocomposites. Carbohydr Polym 83:38–43. doi:10.1016/j.carbpol.2010.07.019

    Article  Google Scholar 

  • Liu H, Song J, Shang S et al (2012) Cellulose nanocrystal/silver nanoparticle composites as bifunctional nanofillers within waterborne polyurethane. ACS Appl Mater Interfaces 4(5):2413–2419

    Article  Google Scholar 

  • Liu Q, Campbell MG, Evans JS, Smalyukh II (2014) Nanocrystals: orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals (Adv. Mater. 42/2014). Adv Mater 26:7133–7133. doi:10.1002/adma.201470287

    Article  Google Scholar 

  • Martins NCT, Freire CSR, Pinto RJB et al (2012) Electrostatic assembly of Ag nanoparticles onto nanofibrillated cellulose for antibacterial paper products. Cellulose 19:1425–1436. doi:10.1007/s10570-012-9713-5

    Article  Google Scholar 

  • Mohammad K, Uddin A, Rojas OJ, et al (2014) Silver nanoparticle synthesis mediated by carboxylated cellulose nanocrystals. Green Mater 1–10

  • Montanari S, Roumani M, Heux L, Vignon MR (2005) Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38:1665–1671. doi:10.1021/ma048396c

    Article  Google Scholar 

  • Padalkar S, Capadona JR, Rowan SJ et al (2010) Natural biopolymers : novel templates for the synthesis of nanostructures. Langmuir 26:8497–8502

    Article  Google Scholar 

  • Padalkar S, Capadona JR, Rowan SJ et al (2011) Self-assembly and alignment of semiconductor nanoparticles on cellulose nanocrystals. J Mater Sci 46:5672–5679. doi:10.1007/s10853-011-5518-4

    Article  Google Scholar 

  • Quarta A, Ragusa A, Deka S et al (2009) Bioconjugation of rod-shaped fluorescent nanocrystals for efficient targeted cell labeling. Langmuir 25:12614–12622. doi:10.1021/la901831y

    Article  Google Scholar 

  • Querejeta-Fernández A, Chauve G, Methot M et al (2014) Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J Am Chem Soc 136:4788–4793. doi:10.1021/ja501642p

    Article  Google Scholar 

  • Revol J-F, Bradford H, Giasson J et al (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14:170–172. doi:10.1016/S0141-8130(05)80008-X

    Article  Google Scholar 

  • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794. doi:10.1177/004051755902901003

    Article  Google Scholar 

  • Shin Y, Bae IT, Arey BW, Exarhos GJ (2007) Simple preparation and stabilization of nickel nanocrystals on cellulose nanocrystal. Mater Lett 61:3215–3217. doi:10.1016/j.matlet.2006.11.036

    Article  Google Scholar 

  • Shin Y, Bae I, Arey BW et al (2008) Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal. J Phys Chem C 112(13):4844–4848

    Article  Google Scholar 

  • Siqueira G, Abdillahi H, Bras J, Dufresne A (2009) High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose 17:289–298. doi:10.1007/s10570-009-9384-z

    Article  Google Scholar 

  • Šturcová A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061

    Article  Google Scholar 

  • Sun Y, Liu Y, Zhao G et al (2008) Preparation of pH-responsive silver nanoparticles by RAFT polymerization. J Mater Sci 43:4625–4630. doi:10.1007/s10853-008-2671-5

    Article  Google Scholar 

  • Van Hyning DL, Zukoski CF (1998) Formation mechanisms and aggregation behavior of borohydride reduced silver particles. Langmuir 14(24):7034–7046

    Article  Google Scholar 

  • Way AE, Hsu L, Shanmuganathan K et al (2012) pH-responsive cellulose nanocrystal gels and nanocomposites. ACS Macro Lett 1:1001–1006. doi:10.1021/mz3003006

    Article  Google Scholar 

  • Wu M, Kuga S, Huang Y (2008) Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils. Langmuir Acs J Surf Colloids 24:10494–10497

    Article  Google Scholar 

  • Xiong R, Lu C, Zhang W et al (2013) Facile synthesis of tunable silver nanostructures for antibacterial application using cellulose nanocrystals. Carbohydr Polym 95:214–219. doi:10.1016/j.carbpol.2013.02.077

    Article  Google Scholar 

  • Xu Q, Yi J, Zhang X, Zhang H (2008) A novel amphotropic polymer based on cellulose nanocrystals grafted with azo polymers. Eur Polym J 44:2830–2837. doi:10.1016/j.eurpolymj.2008.06.010

    Article  Google Scholar 

  • Yan J-K, Cai P-F, Cao X-Q et al (2013) Green synthesis of silver nanoparticles using 4-acetamido-TEMPO-oxidized curdlan. Carbohydr Polym 97:391–397. doi:10.1016/j.carbpol.2013.05.049

    Article  Google Scholar 

  • Yang G, Xie J, Deng Y et al (2012) Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a “green” route for antibacterial application. Carbohydr Polym 87:2482–2487. doi:10.1016/j.carbpol.2011.11.017

    Article  Google Scholar 

  • Yang J, Han C-R, Zhang X-M et al (2014) Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-links: correlations between dissipation properties and deformation mechanisms. Macromolecules 47:4077–4086. doi:10.1021/ma500729q

    Article  Google Scholar 

Download references

Acknowledgments

This research was made possible thanks to the facilities of the TekLiCell platform funded by the Région Rhône-Alpes (ERDF: European regional development fund). This work has been partially supported by Poly-Ink and the French National Research Agency (ANRT). LGP2 is part of the LabEx Tec 21 (Investissements d’Avenir - grant agreement n°ANR-11-LABX-0030) and of the Énergies du Futur and PolyNat Carnot Institutes (Investissements d’Avenir - grant agreements n°ANR-11-CARN-007-01 and ANR-11-CARN-030-01). This research was possible because of the facilities of the TekLiCell platform funded by the Région Rhône-Alpes (ERDF: European regional development fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Bras.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoeng, F., Denneulin, A., Neuman, C. et al. Charge density modification of carboxylated cellulose nanocrystals for stable silver nanoparticles suspension preparation. J Nanopart Res 17, 244 (2015). https://doi.org/10.1007/s11051-015-3044-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3044-z

Keywords

Navigation