Skip to main content
Log in

Novel ethylene diamine functionalised nanocellulose/poly(ethylene-co-acrylic acid) composites for biomedical applications

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Functionalisation is a viable route for enhancing the interfacial interactions between a hydrophobic polymer matrix and a hydrophilic reinforcement. One of the challenges in this strategy, particularly for reinforcements similar to cellulose, is the improvement in interfacial adhesion while not sacrificing the key properties including biocompatibility. In this part of the present investigation, cellulose nanoparticles were functionalised with ethylene diamine to form aminodeoxy cellulose nanoparticles and subsequently incorporated into poly(ethylene-co-acrylic acid) to develop composites. The successful functionalisation was confirmed by FTIR. TEM analysis showed that the reinforcement particles retained their nanodimensions even after functionalisation. The mechanical properties of EAA films were found to be improved by the addition of functionalised nanoparticles. Thermal stability of the nanoparticles and composites was seen to be improved by functionalisation. The functionalised nanocellulose reinforced composites showed excellent biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Alila S, Ferraria AM, do Rego AMB, Boufi S (2009) Controlled surface modification of cellulose fibers by amino derivatives using N, N′-carbonyldiimidazole as activator. Carbohydr Polym 77:553–562

    Article  CAS  Google Scholar 

  • Alizadeh K, Rad N (2016) A new optical sensor for selective monitoring of nickel ion based on a hydrazone derivative immobilized on the triacetyl cellulose membrane. J Anal Bioanal Tech 7:2

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  CAS  PubMed  Google Scholar 

  • Baumann H, Liu C, Faust V (2003) Regioselectively modified cellulose and chitosan derivatives for mono-and multilayer surface coatings of hemocompatible biomaterials. Cellulose 10:65–74

    Article  CAS  Google Scholar 

  • Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crops Prod 32:627–633

    Article  CAS  Google Scholar 

  • Chang M, Thomas D, Sperling L (1987) Characterization of the area under loss modulus and tan δ–temperature curves: acrylic polymers and their sequential interpenetrating polymer networks. J Appl Polym Sci 34:409–422

    Article  CAS  Google Scholar 

  • Chenampulli S, Unnikrishnan G, Sujith A, Thomas S, Francis T (2013) Cellulose nano-particles from Pandanus: viscometric and crystallographic studies. Cellulose 20:429–438

    Article  CAS  Google Scholar 

  • Cho H, Teshirogi T, Sakamoto M, Tonami H (1973) Synthesis of amino-deoxy cellulose. Chem Lett 2(6):595–597

    Article  Google Scholar 

  • da Silva Filho EC, de Melo JC, Airoldi C (2006) Preparation of ethylenediamine-anchored cellulose and determination of thermochemical data for the interaction between cations and basic centers at the solid/liquid interface. Carbohydr Res 341:2842–2850

    Article  CAS  PubMed  Google Scholar 

  • da Silva Filho EC, de Melo JC, da Fonseca MG, Airoldi C (2009) Cation removal using cellulose chemically modified by a Schiff base procedure applying green principles. J Colloid Interface Sci 340:8–15

    Article  CAS  PubMed  Google Scholar 

  • da Silva Filho EC, Santana SA, Melo JC, Oliveira FJ, Airoldi C (2010) X-ray diffraction and thermogravimetry data of cellulose, chlorodeoxycellulose and aminodeoxycellulose. J Thermal Anal Calorim 100:315–321

    Article  CAS  Google Scholar 

  • de Graaf RA, Karman AP, Janssen LP (2003) Material properties and glass transition temperatures of different thermoplastic starches after extrusion processing. Starch-Stärke 55:80–86

    Article  Google Scholar 

  • Dufresne A, Cavaille J-Y, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194

    Article  CAS  Google Scholar 

  • Favier V, Dendievel R, Canova G, Cavaille J, Gilormini P (1997) Simulation and modeling of three-dimensional percolating structures: case of a latex matrix reinforced by a network of cellulose fibers. Acta Mater 45:1557–1565

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Grunert M, Winter WT (2002) Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals. J Polym Environ 10:27–30

    Article  CAS  Google Scholar 

  • Haseena A, Unnikrishnan G, Kalaprasad G (2007) Dielectric properties of short sisal/coir hybrid fibre reinforced natural rubber composites. Compos Interfaces 14:763–786

    Article  CAS  Google Scholar 

  • Heinze T, Koschella A, Magdaleno-Maiza L, Ulrich A (2001) Nucleophilic displacement reactions on tosyl cellulose by chiral amines. Polym Bull 46:7–13

    Article  CAS  Google Scholar 

  • Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Experimental trends in polymer nanocomposites—a review. Mater Sci Eng A 393:1–11

    Article  CAS  Google Scholar 

  • Karrer P, Wehrli W (1926) Amidierung der Baumwolle. Helv Chim Acta 9:591–597

    Article  CAS  Google Scholar 

  • Krylova R (1987) Halogenodeoxy-derivatives of cellulose. Russ Chem Rev 56:97–105

    Article  Google Scholar 

  • Lee S-Y, Mohan DJ, Kang I-A, Doh G-H, Lee S, Han SO (2009) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers Polym 10:77–82

    Article  CAS  Google Scholar 

  • Liu C, Baumann H (2002) Exclusive and complete introduction of amino groups and their N-sulfo and N-carboxymethyl groups into the 6-position of cellulose without the use of protecting groups. Carbohydr Res 337:1297–1307

    Article  CAS  PubMed  Google Scholar 

  • Lonsdale H, Merten U, Riley R (1965) Transport properties of cellulose acetate osmotic membranes. J Appl Polym Sci 9:1341–1362

    Article  CAS  Google Scholar 

  • Malainine ME, Mahrouz M, Dufresne A (2005) Thermoplastic nanocomposites based on cellulose microfibrils from Opuntia ficus-indica parenchyma cell. Compos Sci Technol 65:1520–1526

    Article  CAS  Google Scholar 

  • Martin A, Sanchez-Chaves M, Arranz F (1999) Synthesis, characterization and controlled release behaviour of adducts from chloroacetylated cellulose and α-naphthylacetic acid. React Funct Polym 39:179–187

    Article  CAS  Google Scholar 

  • Nyström G, Mihranyan A, Razaq A, Lindström T, Nyholm L, Strømme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114:4178–4182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ouyang J, Goh S (2002) Crystallization, morphology, and dynamic mechanical behavior of supramolecular [60] fullerene-containing poly(ethylene-co-acrylic acid). Fuller Nanotub Carbon Nanostruct 10:183–196

    Article  CAS  Google Scholar 

  • Pehlivan E, Altun T (2006) The study of various parameters affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from aqueous solution on Dowex 50 W synthetic resin. J Hazard Mater 134:149–156

    Article  CAS  PubMed  Google Scholar 

  • Salsa T, Veiga F, Pina M (1997) Oral controlled-release dosage forms. I. Cellulose ether polymers in hydrophilic matrices. Drug Dev Ind Pharm 23:929–938

    Article  CAS  Google Scholar 

  • Segal L, Creely J, Martin A Jr, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  • Shogren R, Thompson A, Felker F, Harry-Ókuru R, Gordon S, Greene R, Gould J (1992) Polymer compatibility and biodegradation of starch–poly (ethylene-co-acrylic acid)–polyethylene blends. J Appl Polym Sci 44:1971–1978

    Article  CAS  Google Scholar 

  • Tashiro T, Shimura Y (1982) Removal of mercuric ions by systems based on cellulose derivatives. J Appl Polym Sci 27:747–756

    Article  CAS  Google Scholar 

  • Touzinsky GF, Gordon SM (1979) Degree of substitution of cellulose derivatives containing n different substituent groups. Carbohydr Res 69:327–329

    Article  CAS  Google Scholar 

  • Visakh PM, Thomas S (2010) Preparation of bionanomaterials and their polymer nanocomposites from waste and biomass. Waste Biomass Valor 1:121–134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The first author wish to kindly acknowledge Council for Scientific and Industrial Research, Govt. of India for JRF fellowship and Centre for Engineering Research and Development, Kerala for the Research Seed Money project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Unnikrishnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chenampulli, S., Unnikrishnan, G., Thomas, S. et al. Novel ethylene diamine functionalised nanocellulose/poly(ethylene-co-acrylic acid) composites for biomedical applications. Cellulose 26, 1795–1809 (2019). https://doi.org/10.1007/s10570-018-02227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-02227-6

Keywords

Navigation