Skip to main content
Log in

Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Semi-interpenetrating polymer network hydrogels with improved mechanical properties and remarkable sensitivity toward pH changes were prepared using chitosan reinforced with cellulose nanocrystals (CNCs). Glutaraldehyde was used as a crosslinker because of its high reactivity toward the amine groups of chitosan. In this study, rod-shaped CNCs that were approximately 200–300 nm in length and 40–50 nm in width were prepared from microcrystalline cellulose via sulfuric acid hydrolysis. CNC ratios of 0, 0.5, 1, 1.5, 2, and 2.5% were selected to study the effects of CNCs on the mechanical properties and swelling behavior of the chitosan hydrogel. The crosslinking reaction between chitosan and glutaraldehyde was confirmed by the presence of a –C=N stretching group at 1548 cm−1 in the Fourier transform infrared spectrum of chitosan hydrogel. The crosslinking degree of the chitosan hydrogel was 83.6%. The X-ray diffraction patterns confirmed that adding CNCs induced a combination of amorphous and crystalline regions in the hydrogel matrix. Mechanical tests showed that the maximum compression of the chitosan hydrogel increased from 25.9 ± 1 to 50.8 ± 3 kPa with increasing CNC content from 0 to 2.5%. CNC-chitosan hydrogels exhibited excellent pH sensitivity and producing the maximum swelling ratio under acidic condition (pH 4.01). On the basis of the results of this study, we assume that the improved mechanical properties and excellent pH sensitivity of the CNC-chitosan hydrogels will expand their application scopes in various fields, such as tissue engineering, pharmaceuticals, and drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmed EM (2015) Hydrogel: preparation, characterization, and applications: a review. J Adv Res 6:105–121

    Article  CAS  Google Scholar 

  • Azeredo H, Mattoso LHC, Avena-Bustillos RJ, Munford ML, Wood D, McHugh TH (2010) Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J Food Sci 75:N1–N7

    Article  CAS  Google Scholar 

  • Bangyekan C, Aht-Ong D, Srikulkit K (2006) Preparation and properties evaluation of chitosan-coated cassava starch films. Carbohydr Polym 63:61–71

    Article  CAS  Google Scholar 

  • Brugnerotto J, Lizardi J, Goycoolea F, Argüelles-Monal W, Desbrieres J, Rinaudo M (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42:3569–3580

    Article  CAS  Google Scholar 

  • Budianto E, Muthoharoh SP, Nizardo NM (2015) Effect of crosslinking agents, pH and temperature on swelling behavior of cross-linked chitosan hydrogel. Asian J Appl Sci 3:581–588

    Google Scholar 

  • Caló E, Khutoryanskiy VV (2015) Biomedical applications of hydrogels: a review of patents and commercial products. Eur Polym J 65:252–267

    Article  Google Scholar 

  • Celebi H, Kurt A (2015) Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydr Polym 133:284–293

    Article  CAS  Google Scholar 

  • Chang C-W, van Spreeuwel A, Zhang C, Varghese S (2010) PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Matter 6:5157–5164

    Article  CAS  Google Scholar 

  • Chen RH, Lin JH, Yang MH (1994) Relationships between the chain flexibilities of chitosan molecules and the physical properties of their casted films. Carbohydr Polym 24:41–46

    Article  CAS  Google Scholar 

  • Ching YC, Ng TS (2014) Effect of preparation conditions on cellulose from oil palm empty fruit bunch fiber. Bioresource 9(4):6373–6385

    Article  CAS  Google Scholar 

  • Ching YC, Ashiqur R, Yong KC, Nazatul LS, Cheng HC (2015) Preparation and characterization of polyvinyl alcohol based composite reinforced with nanocellulose and nanosilica. BioResources 10(2):3364–3377

    Article  CAS  Google Scholar 

  • Ching YC, Md Ershad A, Luqman CA, Choo KW, Yong CK, Sabariah JJ, Cheng HC, Liou NS (2016) Rheological properties of cellulose nanocrystal-embedded polymer composites: a review. Cellulose 23:1011–1030

    Article  CAS  Google Scholar 

  • Cho M-J, Park B-D (2011) Tensile and thermal properties of nanocellulose-reinforced poly (vinyl alcohol) nanocomposites. J Ind Eng Chem 17:36–40

    Article  CAS  Google Scholar 

  • Choo KW, Ching YC, Chuah CH, Sabariah JJ, Liou NS (2016) Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials 9:644

    Article  Google Scholar 

  • Dong F, Li S, Yan M, Li C (2014) Preparation and properties of chitosan/nanocrystalline cellulose composite films for food packaging. Asian J Chem 26:5895

    CAS  Google Scholar 

  • Ershad A, Yong KC, Ching YC, Chuah CH, Liou NS (2015) Effect of single and double stage chemically treated kenaf fibers on mechanical properties of polyvinyl alcohol film. Bioresource 10:822–838

    Google Scholar 

  • Fathurrahmi, Rahmi, Purnaratrie A, Irwansyah (2015) Comparative adsorption of Fe(III) and Cd(II) ions on glutaraldehyde crosslinked chitosan–coated cristobalite. Orient J Chem 31:2071–2076

    Article  Google Scholar 

  • Fernandes Queiroz M, Melo KRT, Sabry DA, Sassaki GL, Rocha HAO (2014) Does the use of chitosan contribute to oxalate kidney stone formation? Mar Drugs 13:141–158

    Article  Google Scholar 

  • Fernandes SC, Freire CS, Silvestre AJ, Neto CP, Gandini A, Berglund LA, Salmén L (2010) Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohydr Polym 81:394–401

    Article  CAS  Google Scholar 

  • French A (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588

    Article  CAS  Google Scholar 

  • George J, Sabapathi S (2015) Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 8:45–54

    Article  Google Scholar 

  • Goh KY, Ching YC, Cheng HC, Luqman CA, Liou N (2016) Individualization of microfibrillated celluloses from oil palm empty fruit bunch: comparative studies between acid hydrolysis and ammonium persulfate oxidation. Cellulose 23:379–390. doi:10.1007/s10570-015-0812-y

    Article  CAS  Google Scholar 

  • González K, Retegi A, González A, Eceiza A, Gabilondo N (2015) Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohydr Polym 117:83–90

    Article  Google Scholar 

  • Han J, Lei T, Wu Q (2014) High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: dynamic rheological properties and hydrogel formation mechanism. Carbohydr Polym 102:306–316

    Article  CAS  Google Scholar 

  • Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993–2007

    Article  CAS  Google Scholar 

  • Hussain R, Iman M, Maji TK (2013) Determination of degree of deacetylation of chitosan and their effect on the release behavior of essential oil from chitosan and chitosan-gelatin complex microcapsules. Int J Adv Eng Appl 6:4–12

    Google Scholar 

  • Ji C, Annabi N, Khademhosseini A, Dehghani F (2011) Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomater 7:1653–1664

    Article  CAS  Google Scholar 

  • Khan A, Khan RA, Salmieri S, Le Tien C, Riedl B, Bouchard J, Chauve G, Tan V, Kamal MR, Lacroix M (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601–1608

    Article  CAS  Google Scholar 

  • Khoo R, Ismail H, Chow W (2016) Thermal and morphological properties of poly (lactic acid)/nanocellulose nanocomposites. Proced Chem 19:788–794

    Article  CAS  Google Scholar 

  • Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro-waste. J Mater Phys Chem 2:1–8

    Google Scholar 

  • Leceta I, Guerrero P, De la Caba K (2013) Functional properties of chitosan-based films. Carbohydr Polym 93:339–346

    Article  CAS  Google Scholar 

  • Li B, Shan C-L, Zhou Q, Fang Y, Wang Y-L, Xu F, Han L-R, Ibrahim M, Guo L-B, Xie G-L (2013) Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Mar Drugs 11:1534–1552

    Article  CAS  Google Scholar 

  • Li W, Lan Y, Guo R, Zhang Y, Xue W, Zhang Y (2015) In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor. J Biomater Appl 29:882–893

    Article  CAS  Google Scholar 

  • Maitra J, Shukla VK (2014) Cross-linking in hydrogels-a review. Am J Polym Sci 4:25–31

    CAS  Google Scholar 

  • Mariano M, El Kissi N, Dufresne A (2016) Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites. Carbohydr Polym 137:174–183

    Article  CAS  Google Scholar 

  • Mohammed N, Grishkewich N, Berry RM, Tam KC (2015) Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions. Cellulose 22:3725–3738

    Article  CAS  Google Scholar 

  • Mohd Nasir NF, Mohd Zain N, Raha MG, Kadri NA (2005) Characterization of chitosan-poly (ethylene oxide) blends as haemodialysis membrane. Am J Appl Sci 2(12):1578–1583

    Article  Google Scholar 

  • Mohd ACM, Ching YC, Luqman CA, Poh SC, Chuah CH (2016) Review of bionanocomposite coating films and their applications. Polymers 8:246

    Article  Google Scholar 

  • Ng TS, Ching YC, Awanis N, Ishenny N, Rahman MR (2014) Effect of bleaching condition on thermal properties and UV-transmittance of PVA/cellulose biocomposites. Mater Res Innov 18:400–404

    Article  Google Scholar 

  • Novo LP, Bras J, García A, Belgacem N, Curvelo AA (2015) Subcritical water: a method for green production of cellulose nanocrystals. ACS Sustain Chem Eng 3:2839–2846

    Article  CAS  Google Scholar 

  • Ooi SY, Ahmad I, Amin MCIM (2015) Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Ind Crops Prod. doi:10.1016/j.indcrop.2015.11.082

    Google Scholar 

  • Park M, Lee D, Hyun J (2015) Nanocellulose-alginate hydrogel for cell encapsulation. Carbohydr Polym 116:223–228

    Article  CAS  Google Scholar 

  • Prajapati BG, Patel MM (2010) Crosslinked chitosan gel for local drug delivery of clotrimazole. J Sci Technol 21:43–52

    Google Scholar 

  • Rao KK, Naidu BVK, Subha M, Sairam M, Aminabhavi T (2006) Novel chitosan-based pH-sensitive interpenetrating network microgels for the controlled release of cefadroxil. Carbohydr Polym 66:333–344

    Article  CAS  Google Scholar 

  • Rohindra DR, Nand AV, Khurma JR (2004) Swelling properties of chitosan hydrogels. South Pac J Nat Appl Sci 22:32–35

    Google Scholar 

  • Rubentheren V, Ward TA, Ching YC, Tang CK (2015a) Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohydr Polym 115:379–387

    Article  CAS  Google Scholar 

  • Rubentheren V, Ward TA, Ching YC, Nair P (2015b) Physical and chemical reinforcement of chitosan film using nanocrystalline cellulose and tannic acid. Cellulose 22:2529–2541

    Article  CAS  Google Scholar 

  • Rubentheren V, Ward TA, Ching YC, Nair P, Erfan S, Christopher F (2016) Effect of heat treatment on chitosan nanocomposite film reinforced with nanocrystalline cellulose and tannic acid. Carbohydr Polym 140:202–208

    Article  CAS  Google Scholar 

  • Sampath UG, Ching YC, Chuah CH, Sabariah JJ, Lin PC (2016) Fabrication of porous materials from natural/synthesis biopolymers and their composites. Materials 9:991

    Article  Google Scholar 

  • Seng KC, Ealid M, Ching YC, Haniff M, Khalid K, Beg MTH (2014) Preparation and characterization on polyvinyl alcohol/oil palm empty fruit bunch fiber composite. Mater Res Innov 18:364–367

    Google Scholar 

  • Shapiro JM, Oyen ML (2013) Hydrogel composite materials for tissue engineering scaffolds. JOM 65:505–516

    Article  CAS  Google Scholar 

  • Shivashankar M, Mandal BK (2012) A review on interpenetrating polymer network. Int J Phram Phram Sci 4:1–7

    CAS  Google Scholar 

  • Sullivan EM, Moon RJ, Kalaitzidou K (2015) Processing and characterization of cellulose nanocrystals/polylactic acid nanocomposite films. Materials 8:8106–8116

    Article  Google Scholar 

  • Tan BK, Ching YC, Poh SC, Luqman CA, Gan SN (2015) Review of natural fiber reinforced poly(vinyl alcohol) based composites: application and Opportunity. Polymers 7:2205–2222

    Article  CAS  Google Scholar 

  • Tanpichai S, Oksman K (2016) Cross-linked nanocomposite hydrogels based on cellulose nanocrystals and PVA: mechanical properties and creep recovery. Compos A Appl Sci Manuf 88:226–233

    Article  CAS  Google Scholar 

  • Thennakoon MSUG, Ching YC, Chuah CH (2016) Enhancement of curcumin bioavailability using nanocellulose reinforced chitosan hydrogel. Polymers. doi:10.3390/polym9020064www.mdpi

    Google Scholar 

  • Velásquez-Cock J, Ramírez E, Betancourt S, Putaux J-L, Osorio M, Castro C, Gañán P, Zuluaga R (2014) Influence of the acid type in the production of chitosan films reinforced with bacterial nanocellulose. Int J Biol Macromol 69:208–213

    Article  Google Scholar 

  • Weng L, Chen X, Chen W (2007) Rheological characterization of in situ crosslinkable hydrogels formulated from oxidized dextran and N-carboxyethyl chitosan. Biomacromol 8:1109–1115

    Article  CAS  Google Scholar 

  • Yang J, Han C-R, Duan J-F, Ma M-G, Zhang X-M, Xu F, Sun R-C, Xie X-M (2012) Studies on the properties and formation mechanism of flexible nanocomposite hydrogels from cellulose nanocrystals and poly (acrylic acid). J Mater Chem 22:22467–22480

    Article  CAS  Google Scholar 

  • Yang X, Bakaic E, Hoare T, Cranston ED (2013) Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity. Biomacromol 14:4447–4455

    Article  CAS  Google Scholar 

  • Yi H, Wu L-Q, Bentley WE, Ghodssi R, Rubloff GW, Culver JN, Payne GF (2005) Biofabrication with chitosan. Biomacromol 6:2881–2894

    Article  CAS  Google Scholar 

  • Zhang Z, Wu Q, Song K, Lei T, Wu Y (2015) Poly (vinylidene fluoride)/cellulose nanocrystals composites: rheological, hydrophilicity, thermal and mechanical properties. Cellulose 22:2431–2441

    Article  CAS  Google Scholar 

  • Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Exp Rev Med Devices 8:607–626

    Article  Google Scholar 

Download references

Acknowledgments

The authors Research MOE Grant UM.C/625/1/HIR/MOE/ENG/52FP053-2015; grants from the Ministry of Education Malaysia: FP053-2015A, FP030-2013A; and research grant from would like to acknowledge the financial support from High Impact University of Malaya: RP011A-13AET, RU022A-2014, PG160-2016A, RU018I-2016, RG031-15AET, and for the success of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yern Chee Ching.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampath, U.G.T.M., Ching, Y.C., Chuah, C.H. et al. Preparation and characterization of nanocellulose reinforced semi-interpenetrating polymer network of chitosan hydrogel. Cellulose 24, 2215–2228 (2017). https://doi.org/10.1007/s10570-017-1251-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1251-8

Keywords

Navigation