Skip to main content
Log in

Hydrogel Composite Materials for Tissue Engineering Scaffolds

  • Published:
JOM Aims and scope Submit manuscript

Hydrogels are appealing for biomaterials applications due to their compositional similarity with highly hydrated natural biological tissues. However, for structurally demanding tissue engineering applications, hydrogel use is limited by poor mechanical properties. Here, composite materials approaches are considered for improving hydrogel properties while attempting to more closely mimic natural biological tissue structures. A variety of composite material microstructures is explored, based on multiple hydrogel constituents, particle reinforcement, electrospun nanometer to micrometer diameter polymer fibers with single and multiple fiber networks, and combinations of these approaches to form fully three-dimensional fiber-reinforced hydrogels. Natural and synthetic polymers are examined for formation of a range of scaffolds and across a range of engineered tissue applications. Following a discussion of the design and fabrication of composite scaffolds, interactions between living biological cells and composite scaffolds are considered across the full life cycle of tissue engineering from scaffold fabrication to in vivo use. We conclude with a summary of progress in this area to date and make recommendations for continuing research and for advanced hydrogel scaffold development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Kurtz, K. Ong, E. Lau, F. Mowat, and M. Halpern, J. Bone Joint Surg. 89, 780 (2007).

    Article  Google Scholar 

  2. J.W. Alford and B.J. Cole, Am. J. Sports Med. 33, 443 (2005).

    Article  Google Scholar 

  3. T.W. Bauer and G.F. Muschler, Clin. Orthop. 371, 10 (2000).

    Article  Google Scholar 

  4. A. Carli, A. Reuven, D.J. Zukor, and J. Antoniou, Bull. NYU Hosp. Jt. Dis. 69, S47 (2011).

    Google Scholar 

  5. K.J. Lafferty and J. Woolnough, Immunol. Rev. 35, 231 (1977).

    Article  Google Scholar 

  6. J. Kartus, T. Movin, and J. Karlsson, Arthroscopy 17, 971 (2001).

    Article  Google Scholar 

  7. J.C. Banwart, M.A. Asher, and R.S. Hassanein, Spine 20, 1055 (1995).

    Article  Google Scholar 

  8. P.X. Ma, Adv. Drug Deliv. Rev. 60, 184 (2008).

    Article  Google Scholar 

  9. R. Langer and D.A. Tirrell, Nature 428, 487 (2004).

    Article  Google Scholar 

  10. W.F. Liu and C.S. Chen, Mater. Today 8, 28 (2005).

    Article  Google Scholar 

  11. R. Langer and J.P. Vacanti, Science 260, 920 (1993).

    Article  Google Scholar 

  12. L.G. Griffith and G. Naughton, Science 295, 1009 (2002).

    Article  Google Scholar 

  13. A. de Mel, A.M. Seifalian, and M.A. Birchall, Macromol. Biosci. 12, 1010 (2012).

    Article  Google Scholar 

  14. M.P. Lutolf and J.A. Hubbell, Nat. Biotechnol. 23, 47 (2005).

    Article  Google Scholar 

  15. J.L. Drury and D.J. Mooney, Biomaterials 24, 4337 (2003).

    Article  Google Scholar 

  16. K.Y. Lee and D.J. Mooney, Chem. Rev. 101, 1869 (2001).

    Article  Google Scholar 

  17. W.J. Li, C.T. Laurencin, E.J. Caterson, R.S. Tuan, and F.K. Ko, J. Biomed. Mater. Res. 60, 613 (2002).

    Article  Google Scholar 

  18. S. Agarwal, J.H. Wendorff, and A. Greiner, Polymer 49, 5603 (2008).

    Article  Google Scholar 

  19. L.A. Bosworth, L.A. Turner, and S.H. Cartmell, Nanomedicine (2012, in press). doi:10.1016/j.nano.2012.10.008.

  20. B.D. Ratner and A.S. Hoffman, Hydrogels for Medical and Related Applications (Washington, DC: American Chemical Society, 1976).

    Google Scholar 

  21. A.S. Hoffman, Adv. Drug Deliv. Rev. 54, 3 (2002).

    Article  Google Scholar 

  22. N.A. Peppas, J.Z. Hilt, A. Khademhosseini, and R. Langer, Adv. Mater. 18, 1345 (2006).

    Article  Google Scholar 

  23. B. Baroli, J. Pharm. Sci. 96, 2197 (2007).

    Article  Google Scholar 

  24. D.S.W. Benoit, M.P. Schwartz, A.R. Durney, and K.S. Anseth, Nat. Mater. 7, 816 (2008).

    Article  Google Scholar 

  25. E. Ruel-Gariépy and J.C. Leroux, Eur. J. Pharm. Biopharm. 58, 409 (2004).

    Article  Google Scholar 

  26. L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties (Cambridge, U.K.: Cambridge University Press, 1997).

  27. P.G. de Gennes, Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press, 1979).

    Google Scholar 

  28. M. Tokita and T. Tanaka, J. Chem. Phys. 95, 4613 (1991).

    Article  Google Scholar 

  29. T.J. Sill and H.A. von Recum, Biomater. 29, 1989 (2008).

    Article  Google Scholar 

  30. S. Ramakrishna, An Introduction to Electrospinning and Nanofibers (Hackensack, NJ: World Scientific Publishing Company Inc., 2005).

    Book  Google Scholar 

  31. J.A. Matthews, G.E. Wnek, D.G. Simpson, and G.L. Bowlin, Biomacromolecules 3, 232 (2002).

    Article  Google Scholar 

  32. Z.M. Huang, Y. Zhang, S. Ramakrishna, and C. Lim, Polymer 45, 5361 (2004).

    Article  Google Scholar 

  33. N. Bhattarai, Z. Li, D. Edmondson, and M. Zhang, Adv. Mater. 18, 1463 (2006).

    Article  Google Scholar 

  34. B.M. Min, G. Lee, S.H. Kim, Y.S. Nam, T.S. Lee, and W.H. Park, Biomaterials 25, 1289 (2004).

    Article  Google Scholar 

  35. R. Jaeger, M.M. Bergshoef, C.M.I. Batlle, H. Schönherr, and G.J. Vansco, Proc. Macromolec. Symp. 127, 141 (1998).

    Article  Google Scholar 

  36. T.K. Dash and V.B. Konkimalla, J. Control. Rel. 158, 15 (2012).

    Article  Google Scholar 

  37. A. Cipitria, A. Skelton, T. Dargaville, P. Dalton, and D. Hutmacher, J. Mater. Chem. 21, 9419 (2011).

    Article  Google Scholar 

  38. D. Sun, C. Chang, S. Li, and L. Lin, Nano Lett. 6, 839 (2006).

    Article  Google Scholar 

  39. A. D’Amore, J.A. Stella, W.R. Wagner, and M.S. Sacks, Biomaterials 31, 5345 (2010).

    Article  Google Scholar 

  40. T. Courtney, M.S. Sacks, J. Stankus, J. Guan, and W.R. Wagner, Biomaterials 27, 3631 (2006).

    Google Scholar 

  41. C. Koh and M. Oyen, J. Mech. Behave. Biol. Mater. 12, 74 (2012).

    Article  Google Scholar 

  42. C. Koh and M. Oyen, Technische Mechanik 32, 333 (2012).

    Google Scholar 

  43. U. Stachewicz, I. Peker, W. Tu, and A.H. Barber, ACS Appl. Mater. Interf. 3, 1991 (2011).

    Article  Google Scholar 

  44. S.Y. Gu, Q.L. Wu, J. Ren, and G.J. Vancso, Macromol. Rapid Comm. 26, 716 (2005).

    Article  Google Scholar 

  45. L. Yang, C.F.C. Fitié, K.O. van der Werf, M.L. Bennink, P.J. Dijkstra, and J. Feijen, Biomaterials 29, 955 (2008).

    Article  Google Scholar 

  46. F.T. Moutos and F. Guilak, Biorheology 45, 501 (2008).

    Google Scholar 

  47. A. Clark, R. Richardson, S. Ross-Murphy, and J. Stubbs, Macromolecules 16, 1367 (1983).

    Article  Google Scholar 

  48. D.G.T. Strange, K. Tonsomboon, and M.L. Oyen, MRS Online Proceedings Library (2012). doi:10.1557/opl.2012.742.

  49. S.P. Lake, E.S. Hald, V.H. Barocas, and J. Biomedical Mater, Res. Part A 99, 507 (2011).

    Google Scholar 

  50. P.R. Chatterji, J. Appl. Polym. Sci. 40, 401 (1990).

    Article  Google Scholar 

  51. D.G.T. Strange and M.L. Oyen, J. Mech. Behav. Biomed. 11, 16 (2012).

    Article  Google Scholar 

  52. Y. Tanaka, R. Kuwabara, Y.H. Na, T. Kurokawa, J.P. Gong, and Y. Osada, J. Phys. Chem. B 109, 11559 (2005).

    Article  Google Scholar 

  53. H. Tsukeshiba, M. Huang, Y.H. Na, T. Kurokawa, R. Kuwabara, Y. Tanaka, H. Furukawa, Y. Osada, and J.P. Gong, J. Phys. Chem. B 109, 16304 (2005).

    Article  Google Scholar 

  54. J.Y. Sun, X. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlassak, and Z. Suo, Nature 489, 133 (2012).

    Article  Google Scholar 

  55. C. Yang, X. Wu, Y. Zhao, L. Xu, and S. Wei, J. Appl. Polym. Sci. 121, 3047 (2011).

    Article  Google Scholar 

  56. Y.Z. Zhang, J. Venugopal, Z.M. Huang, C.T. Lim, and S. Ramakrishna, Biomacromolecules 6, 2583 (2005).

    Article  Google Scholar 

  57. M.W. Frey and L. Li, J. Eng. Fibers Fabrics 2, 31 (2007).

    Google Scholar 

  58. B.M. Baker, A.O. Gee, R.B. Metter, A.S. Nathan, R.A. Marklein, J.A. Burdick, and R.L. Mauck, Biomaterials 29, 2348 (2008).

    Article  Google Scholar 

  59. N.J. Amoroso, A. D’Amore, Y. Hong, C.P. Rivera, M.S. Sacks, and W.R. Wagner, Acta Biomater. 8, 4268 (2012).

    Article  Google Scholar 

  60. S. Kidoaki, I.K. Kwon, and T. Matsuda, Biomaterials 26, 37 (2005).

    Article  Google Scholar 

  61. D. Han, S.T. Boyce, and A.J. Steckl, MRS Proc. 1094 (2008). doi:10.1557/PROC-1094-DD06-02.

  62. M. Galli, E. Fornasiere, J. Cugnoni, and M.L. Oyen, J. Mech. Behav. Biomed. 4, 610 (2011).

    Article  Google Scholar 

  63. S.A. Meenach, J.M. Shapiro, J.Z. Hilt, and K.W. Anderson, J. Biomater. Sci., Polym. Ed. 1 (2012).

  64. Y.H. Lee, J.H. Lee, I.G. An, C. Kim, D.S. Lee, Y.K. Lee, and J.D. Nam, Biomaterials 26, 3165 (2005).

    Article  Google Scholar 

  65. J. Coburn, M. Gibson, P.A. Bandalini, C. Laird, H.Q. Mao, L. Moroni, D. Seliktar, and J. Elisseeff, Smart Struct. Syst. 7, 213 (2011).

    Google Scholar 

  66. L. Liverani, J.A. Roether, P. Nooeaid, M. Trombetta, D.W. Schubert, and A.R. Boccaccini, Mater. Sci. Eng. A 557, 54 (2012).

    Article  Google Scholar 

  67. J. Jang, J. Lee, Y.-J. Seol, Y.H. Jeong, and D.-W. Cho, Compos. Part B-Eng. 45, 1216 (2013).

    Article  Google Scholar 

  68. A. Thorvaldsson, J. Silva-Correia, J.M. Oliveira, R.L. Reis, P. Gatenholm, and P. Walkenström, J. Appl. Polym. Sci. 128, 1158 (2013).

    Article  Google Scholar 

  69. Y. Yang, I. Wimpenny, and M. Ahearne, Nanomedicine 7, 131 (2011).

    Article  Google Scholar 

  70. F.T. Moutos, L.E. Freed, and F. Guilak, Nat. Mater. 6, 162 (2007).

    Article  Google Scholar 

  71. S. Sakai, Y. Takagi, Y. Yamada, T. Yamaguchi, and K. Kawakami, Biomed. Mater. 3, 034102 (2008).

    Article  Google Scholar 

  72. O. Regev, C.S. Reddy, N. Nseir, and E. Zussman, Macromol. Mater. Eng. (2012, Epub ahead of print). doi:10.1002/mame.201200012.

  73. J.W. Freeman, M.D. Woods, D.A. Cromer, E.C. Ekwueme, T. Andric, E.A. Atiemo, C.H. Bijoux, and C.T. Laurencin, J. Biomech. 44, 694 (2011).

    Article  Google Scholar 

  74. Y.B. Truong, V. Glattauer, K.L. Briggs, S. Zappe, and J.A.M. Ramshaw, Biomaterials 33, 9198 (2012).

    Article  Google Scholar 

  75. A. Gee, B. Baker, A. Silverstein, G. Montero, J. Esterhai, and R. Mauck, Cell Tissue Res. 347, 803 (2012).

    Article  Google Scholar 

  76. W. Xu, J. Ma, and E. Jabbari, Acta Biomater. 6, 1992 (2010).

    Article  Google Scholar 

  77. M.P. Lutolf, G.P. Raeber, A.H. Zisch, N. Tirelli, and J.A. Hubbell, Adv. Mater. 15, 888 (2003).

    Article  Google Scholar 

  78. J.A. Burdick and K.S. Anseth, Biomaterials 23, 4315 (2002).

    Article  Google Scholar 

  79. G.D. Nicodemus and S.J. Bryant, Tissue Eng. Part B-Rev. 14, 149 (2008).

    Article  Google Scholar 

  80. A. Townsend-Nicholson and S.N. Jayasinghe, Biomacromolecules 7, 3364 (2006).

    Article  Google Scholar 

  81. M. Kim, B. Hong, J. Lee, S.E. Kim, S.S. Kang, Y.H. Kim, and G. Tae, Biomacromolecules 13, 2287 (2012).

    Article  Google Scholar 

  82. A. Thorvaldsson, H. Stenhamre, P. Gatenholm, and P. Walkenström, Biomacromolecules 9, 1044 (2008).

    Article  Google Scholar 

  83. P.B. Malafaya, G.A. Silva, and R.L. Reis, Adv. Drug Del. Rev. 59, 207 (2007).

    Article  Google Scholar 

  84. S. Kim and K.E. Healy, Biomacromolecules 4, 1214 (2003).

    Article  Google Scholar 

  85. B.A. Blakeney, A. Tambralli, J.M. Anderson, A. Andukuri, D.J. Lim, D.R. Dean, and H.W. Jun, Biomaterials 32, 1583 (2011).

    Article  Google Scholar 

  86. E. Gang, C. Ki, J. Kim, J. Lee, B. Cha, K. Lee, and Y. Park, Fibers Polym. 13, 685 (2012).

    Article  Google Scholar 

  87. L.D. Wright, K.D. McKeon-Fischer, Z. Cui, L.S. Nair, and J.W. Freeman, J. Tissue Eng. Regen. Med. (2012, Epub ahead of print). doi:10.1002/term.1591.

  88. A.K. Ekaputra, G.D. Prestwich, S.M. Cool, and D.W. Hutmacher, Biomacromolecules 9, 2097 (2008).

    Article  Google Scholar 

  89. N.E. Zander, J.A. Orlicki, A.M. Rawlett, and T.P. Beebe, J. Mater. Sci.-Mater. Med. 24, 179 (2012).

    Google Scholar 

  90. K.Y. Tsang, M.C.H. Cheung, D. Chan, and K.S.E. Cheah, Cell Tissue Res. 339, 93 (2010).

    Article  Google Scholar 

  91. T. Yin and L. Li, J. Clin. Invest. 116, 1195 (2006).

    Article  Google Scholar 

  92. J. Zhang, C. Niu, L. Ye, H. Huang, X. He, W.G. Tong, J. Ross, J. Haug, T. Johnson, and J.Q. Feng, Nature 425, 836 (2003).

    Article  Google Scholar 

  93. N. Jaiswal, S.E. Haynesworth, A.I. Caplan, and S.P. Bruder, J. Cell. Biochem. 64, 295 (1997).

    Article  Google Scholar 

  94. N. Han, J. Johnson, J.J. Lannutti, and J.O. Winter, J. Control. Rel. 158, 165 (2012).

    Article  Google Scholar 

  95. A.K. Ekaputra, G.D. Prestwich, S.M. Cool, and D.W. Hutmacher, Biomaterials 32, 8108 (2011).

    Article  Google Scholar 

  96. A.J. Engler, S. Sen, H.L. Sweeney, and D.E. Discher, Cell 126, 677 (2006).

    Article  Google Scholar 

  97. M.M. Stevens and J.H. George, Science 310, 1135 (2005).

    Article  Google Scholar 

  98. W.J. Li, Y.J. Jiang, and R.S. Tuan, Tissue Eng. 12, 1775 (2006).

    Article  Google Scholar 

  99. N. Han, J.K. Johnson, P.A. Bradley, K.S. Parikh, J.J. Lannutti, and J.O. Winter, J. Funct. Biomater. 3, 497 (2012).

    Article  Google Scholar 

  100. N.L. Nerurkar, S. Sen, A.H. Huang, D.M. Elliott, and R.L. Mauck, Spine 35, 867 (2010).

    Article  Google Scholar 

  101. M. Lazebnik, M. Singh, P. Glatt, L.A. Friis, C.J. Berkland, and M.S. Detamore, J. Tissue Eng. Regen. M. 5, e179 (2011).

    Article  Google Scholar 

  102. L.J. Nesti, W.J. Li, R.M. Shanti, Y.J. Jiang, W. Jackson, B.A. Freedman, T.R. Kuklo, J.R. Giuliani, and R.S. Tuan, Tissue Eng.-Part A 14, 1527 (2008).

    Google Scholar 

  103. A. Gloria, F. Causa, R. De Santis, P.A. Netti, and L. Ambrosio, J. Mater. Sci. Mater. M. 18, 2159 (2007).

    Article  Google Scholar 

  104. H. Mizuno, A.K. Roy, C.A. Vacanti, K. Kojima, M. Ueda, and L.J. Bonassar, Spine 29, 1290 (2004).

    Article  Google Scholar 

  105. G. Chen, T. Sato, T. Ushida, R. Hirochika, Y. Shirasaki, N. Ochiai, and T. Tateishi, J. Biomed. Mater. Res.-Part A 67, 1170 (2003).

    Google Scholar 

  106. S. Pok, J.D. Myers, S.V. Madihally, and J.G. Jacot, Acta Biomater. (2012). doi:10.1016/j.actbio.2012.10.032.

  107. A. Metters, K. Anseth, and C. Bowman, Polymer 41, 3993 (2000).

    Article  Google Scholar 

  108. G.A. Ameer, T.A. Mahmood, and R. Langer, J. Orthopaed Res. 20, 16 (2002).

    Article  Google Scholar 

  109. W.J.C.M. Marijnissen, G.J.V.M. van Osch, J. Aigner, S.W. van der Veen, A.P. Hollander, H.L. Verwoerd-Verhoef, and J.A.N. Verhaar, Biomaterials 23, 1511 (2002).

    Article  Google Scholar 

  110. H. Mizuno, A.K. Roy, V. Zaporojan, C.A. Vacanti, M. Ueda, and L.J. Bonassar, Biomaterials 27, 362 (2006).

    Article  Google Scholar 

  111. Y. Hong, A. Huber, K. Takanari, N.J. Amoroso, R. Hashizume, S.F. Badylak, and W.R. Wagner, Biomaterials 32, 3387 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Daniel G.T. Strange for providing the SEM image shown in Fig. 3b, Anne Bahnweg for assistance with SEM image collection, and Matthew G. Rees for technical assistance. J.M.S. acknowledges funding from the National Institutes of Health through the NIH-Cambridge Scholars Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Oyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapiro, J.M., Oyen, M.L. Hydrogel Composite Materials for Tissue Engineering Scaffolds. JOM 65, 505–516 (2013). https://doi.org/10.1007/s11837-013-0575-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-013-0575-6

Keywords

Navigation