Skip to main content
Log in

The state of carboxymethylated nanofibrils after homogenization-aided dilution from concentrated suspensions: a rheological perspective

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The rheological properties of a carboxymethylated (D.S. ≈ 0.1) nanofibrillated cellulose (NFC) were investigated at different solid contents. The critical overlap concentration was determined to be in the range between 0.04 and 0.07 % (w/w) using shear stress versus shear rate measurements. From the critical overlap concentration using the simple Mason excluded volume formalism, the apparent aspect ratio was estimated to be 75 [at a critical overlap concentration of 0.04 % (w/w)]. The aspect ratio of the NFC system was also estimated by using the Einstein–Simha equation together with the intrinsic viscosity value of the system (corrected for the electroviscous effects). The obtained value was found to be around 80, which is in good agreement with the value obtained from the excluded volume calculation. Further, by combining oscillatory measurements and the equation of Shankar et al. the apparent fibril length was determined to be 4 µm. As the production of NFC through homogenization occurs at concentrations far above the critical overlap concentration an NFC-gel is constituted by a severely entangled structure. The disentanglement of the fibrils is therefore difficult and the employed dilution method was found not to lead to fully liberated nanofibrils, which was also indicated by atomic force microscopy-imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The strain value was measured to be within the linear viscoelastic region of the systems; results not shown.

  2. The turbidity of the samples was measured by a 2100P Portable Turbidimeter (Hach, USA).

  3. Serial coupled Z-shaped interaction chambers with the diameters of 200 and 100 µm were used.

  4. Assuming AR ≈ 100 and using Eq. 2, a c 0 value in the order of 0.01 % (w/w) is obtained.

References

  • Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979. doi:10.1016/j.carbpol.2011.08.078

    Article  CAS  Google Scholar 

  • Agoda-Tandjawa G, Durand S, Berot S, Blassel C, Gaillard C, Garnier C, Doublier JL (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80(3):677–686. doi:10.1016/j.carbpol.2009.11.045

    Article  CAS  Google Scholar 

  • Booth F (1950) The electroviscous effect for suspensions of solid spherical particles. Proc R Soc Lond A 203(1075):533–551. doi:10.1098/rspa.1950.0155

    Article  CAS  Google Scholar 

  • De Gennes PG (1979) Scaling concepts in polymer physics. Cornell Univ Press, New York

    Google Scholar 

  • Doi M, Edwards SF (1978) Dynamics of concentrated polymer systems. Part 3—The constitutive equation. J Chem Soc Faraday Trans 2 74:1818–1832. doi:10.1039/f29787401818

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemens W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogio M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: Current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33

    Article  CAS  Google Scholar 

  • Fall AB, Lindström SB, Sundman O, Ödberg L, Wågberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338. doi:10.1021/la201947x

  • Fall AB, Lindström SB, Sprakel J, Wågberg L (2013) A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation. Soft Matter 9:1852–1863. doi:10.1039/c2sm27223g

    Article  CAS  Google Scholar 

  • Fujisawa S, Saito T, Isogai A (2012) Nano-dispersion of TEMPO-oxidized cellulose/aliphatic amine salts in isopropyl alcohol. Cellulose 19:459–466. doi:10.1007/s10570-011-9648-2

    Article  CAS  Google Scholar 

  • Fujisawa S, Saito T, Kimura S, Iwata T, Isogai A (2013) Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules 14:1541–1546. doi:10.1021/bm400178m

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10(1):162–165. doi:10.1021/bm801065u

  • Fukuzumi H, Saito T, Isogai A (2013) Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydr Polym 93:172–177. doi:10.1016/j.carbpol.2012.04.069

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Ishii D, Saito T, Isogai A (2011) Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 12(3):548–550. doi:10.1021/bm1013876

    Article  CAS  Google Scholar 

  • Ishii D, Saito T, Isogai A (2012) Correction to viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 13(5):1706. doi:10.1021/bm300482w

    Article  CAS  Google Scholar 

  • Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59(6):449–459. doi:10.1007/s10086-013-1365-z

    Article  CAS  Google Scholar 

  • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85. doi:10.1039/c0nr00583e

    Article  CAS  Google Scholar 

  • Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10(9):2571–2576

    Article  CAS  Google Scholar 

  • Iwamoto S, Lee S-H, Endo T (2014) Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polym J 46(1):73–76. doi:10.1038/pj.2013.64

    Article  CAS  Google Scholar 

  • Junka K, Filpponen I, Lindström T, Laine J (2013) Titrimetric methods for the determination of surface and total charge of functionalized nanofibrillated/microfibrillated cellulose (NFC/MFC). Cellulose 1–9. doi:10.1007/s10570-013-0043-z

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder H-P, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96. doi:10.1007/12_097

    Article  CAS  Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466. doi:10.1002/anie.201001273

    Article  CAS  Google Scholar 

  • Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly(ethylene oxide) in aqueous media. Langmuir 26(16):13450–13456. doi:10.1021/la101795s

    Article  CAS  Google Scholar 

  • Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose-its barrier properties and applications in cellulosic materials: A review. Carbohydr Polym 90:735–764

    Article  CAS  Google Scholar 

  • Mason SG (1950) The flocculation of pulp suspensions and the formation of paper. Pulp Pap Mag Can 51:94–98

    CAS  Google Scholar 

  • Metzger TG (2002) The rheology handbook: for users of rotational and oscillatory rheometers. Vincentz Curt R. Verlag, Hannover

    Google Scholar 

  • Mihranyan A (2010) Cellulose from cladophorales green algae: from environmental problem to high-tech composite materials. J Appl Polym Sci 119:2449–2460

    Article  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. doi:10.1039/c0cs00108b

    Article  CAS  Google Scholar 

  • Naderi A, Lindström T, Sundström J (2014) Carboxymethylated nanofibrillated cellulose: rheological studies. Cellulose 21(3):1561–1571. doi:10.1007/s10570-014-0192-8

  • Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941. doi:10.1021/bm061215p

    Article  Google Scholar 

  • Pan Z, Ge J, Li W, Peng J, Qiu F (2012) Transition from polythiophene-based one-dimensional nanofibers to spherical clusters in ultrafiltration. Soft Matter 8(39):9981–9984. doi:10.1039/c2sm26523k

    Article  CAS  Google Scholar 

  • Puangsin B, Fujisawa S, Kuramae R, Saito T, Isogai A (2013) TEMPO-mediated oxidation of hemp bast holocellulose to prepare cellulose nanofibrils dispersed in water. J Polym Environ 21(2):555–563. doi:10.1007/s10924-012-0548-9

    Article  CAS  Google Scholar 

  • Rezayati CP, Dehghani-Firouzabadi M, Afra E, Shakeri A (2013) Rheological characterization of high concentrated MFC gel from kenaf unbleached pulp. Cellulose 20:727–740. doi:10.1007/s10570-013-9862-1

    Article  Google Scholar 

  • Saastamoinen P, Mattinen M-L, Hippi U, Nousiainen P, Sipila J, Lille M, Suurnakki A, Pere J (2012) Laccase aided modification of nanofibrillated cellulose with dodecyl gallate. BioResources 7:5749–5770

    Google Scholar 

  • Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491. doi:10.1021/bm0703970

    Article  CAS  Google Scholar 

  • Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7(19):8804–8809. doi:10.1039/c1sm06050c

    Article  CAS  Google Scholar 

  • Shankar V, Pasquali M, Morse DC (2002) Theory of linear viscoelasticity of semiflexible rods in dilute solution. J Rheol 46(5):1111–1154

    Article  CAS  Google Scholar 

  • Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromolecules 13(3):842–849. doi:10.1021/bm2017542

    Article  CAS  Google Scholar 

  • Shogren RL, Peterson SC, Evans KO, Kenar JA (2011) Preparation and characterization of cellulose gels from corn cobs. Carbohydr Polym 86:1351–1357. doi:10.1016/j.carbpol.2011.06.035

    Article  CAS  Google Scholar 

  • Simha R (1940) The influence of Brownian movement on the viscosity of solutions. J Phys Chem 44:25–34

    Article  CAS  Google Scholar 

  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494. doi:10.1007/s10570-010-9405-y

    Article  CAS  Google Scholar 

  • Tanaka A, Seppanen V, Houni J, Sneck A, Pirkonen P (2012) Nanocellulose characterization with mechanical fractionation. Nord Pulp Pap Res J 27:689–694. doi:10.3183/NPPRJ-2012-27-04-p689-694

    Article  CAS  Google Scholar 

  • Tanaka R, Saito T, Ishii D, Isogai A (2014) Determination of nanocellulose fibril length by shear viscosity measurement. Cellulose 1–9. doi:10.1007/s10570-014-0196-4

  • Tatsumi D, Ishioka S, Matsumoto T (2002) Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspensions. J Soc Rheol Jpn 30:27–32

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827 (Proceedings of 9th Cellulose conference, 1982, part 2)

  • Varanasi S, He R, Batchelor W (2013) Estimation of cellulose nanofibre aspect ratio from measurements of fibre suspension gel point. Cellulose 1–12. doi:10.1007/s10570-013-9972-9

  • Wågberg L, Winter L, Ödberg L, Lindström T (1987) On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials. Colloids Surf 27:163–173

    Article  Google Scholar 

  • Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24(3):784–795. doi:10.1021/la702481v

    Article  Google Scholar 

  • Zhu H, Helander M, Moser C, Ståhlkranz A, Söderberg D, Henriksson G, Lindström M (2012) A novel nano cellulose preparation method and size fraction by cross flow ultra-filtration. Curr Org Chem 16(16):1871–1875. doi:10.2174/138527212802651197

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ann-Marie Runebjörk, Åsa Blademo, and Åsa Engström are thanked for their competent supporting work. Billerud-Korsnäs, Borregaard, De la Rue, Hansol, Holmen, Kemira, Korsnäs, Metsä Group, Stora Enso, Södra, UPM, and Evergreen Packaging are acknowledged for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Lindström.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, A., Lindström, T. & Pettersson, T. The state of carboxymethylated nanofibrils after homogenization-aided dilution from concentrated suspensions: a rheological perspective. Cellulose 21, 2357–2368 (2014). https://doi.org/10.1007/s10570-014-0329-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-014-0329-9

Keywords

Navigation