Skip to main content
Log in

TEMPO-Mediated Oxidation of Hemp Bast Holocellulose to Prepare Cellulose Nanofibrils Dispersed in Water

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Hemp bast holocellulose fiber (Cannabis sativa L. Subsp. Sativa) was oxidized by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation at various NaClO addition levels in water at pH 10. When carboxylate contents of the oxidized products were 1.5–1.7 mmol/g, TEMPO-oxidized cellulose nanofibrils almost completely dispersed at the individual nanofibril were obtained by mechanical disintegration of the TEMPO-oxidized hemp bast holocelluloses in water, where the nanofibrillation yields were 98–100 %. The sugar composition analysis revealed that most of hemicelluloses originally present in the hemp bast holocellulose were degraded and removed from the solid oxidized products, providing almost pure TEMPO-oxidized celluloses. X-ray diffraction patterns of all TEMPO-oxidized hemp bast holocelluloses had the same cellulose I crystal structure and similar crystallinity indices and crystal widths, indicating that carboxylate groups formed by the oxidation were selectively present on the crystalline cellulose microfibril surfaces in the holocellulose. However, the weight recovery ratios and viscosity-average degrees of polymerization of the TEMPO-oxidized hemp bast holocelluloses decreased to 69–59 % and 470–380, respectively, when their carboxylate contents increased to 1.5–1.7 mmol/g by the TEMPO-mediated oxidation. Atomic force microscopy height images showed that the nanofibril widths were 2.7–2.9 nm, and the average nanofibril lengths decreased from 590 to 400 nm as the NaClO addition level was increased from 7.5 to 12.5 mmol/g in the TEMPO-mediated oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Klemm D, Heubletin B, Fink HP, Bohn A (2005) Angew Chem Int Ed 44:3358

    Article  CAS  Google Scholar 

  2. Pérez S, Samain D (2010) Adv Carbohydr Chem Bi 64:25

    Article  Google Scholar 

  3. Sakurada I, Nukushina Y, Ito T (1962) J Polym Sci 57:651

    Article  CAS  Google Scholar 

  4. Samir MASA, Alloin F, Dufresne A (2005) Biomacromolecules 6:612

    Article  CAS  Google Scholar 

  5. Siró I, Plackett D (2010) Cellulose 17:459

    Article  Google Scholar 

  6. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Angew Chem Int Ed 50:5438

    Article  CAS  Google Scholar 

  7. Isogai A, Saito T, Fukuzumi H (2011) Nanoscale 3:71

    Article  CAS  Google Scholar 

  8. Iwamoto S, Abe K, Yano H (2008) Biomacromolecules 9:1022

    Article  CAS  Google Scholar 

  9. Abe K, Yano H (2009) Cellulose 16:1017

    Article  CAS  Google Scholar 

  10. Chen W, Yu H, Liu Y (2011) Carbohydr Polym 86:453

    Article  CAS  Google Scholar 

  11. Abe K, Yano H (2010) Cellulose 17:271

    Article  CAS  Google Scholar 

  12. Alemdar A, Sain M (2008) Bioresour Technol 99:1664

    Article  CAS  Google Scholar 

  13. de Morais Teixeira E, Corrêa A, Manzoli A, de Lima Leite F, de Oliveira C, Mattoso L (2010) Cellulose 17:595

    Article  Google Scholar 

  14. Wang B, Sain M, Oksman K (2007) Appl Compos Mater 14:89

    Article  Google Scholar 

  15. Moran JI, Alvarez VA, Cyras VP, Vazquez A (2008) Cellulose 15:149

    Article  CAS  Google Scholar 

  16. Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Carbohydr Polym 81:720

    Article  CAS  Google Scholar 

  17. Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Matoso LHC (2010) Carbohydr Polym 81:83

    Article  CAS  Google Scholar 

  18. Zuluaga R, Putaux JL, Cruz J, Velez J, Mondragon I, Gãnan P (2009) Carbohydr Polym 76:51

    Article  CAS  Google Scholar 

  19. Mandal A, Chakrabarty D (2011) Carbohydr Polym 86:1291

    Article  CAS  Google Scholar 

  20. Dinand E, Chanzy H, Vignon RM (1999) Food Hydrocolloid 13:275

    Article  CAS  Google Scholar 

  21. Dufresne A, Cavaille JY, Vignon MR (1997) J Appl Polym Sci 64:1185

    Article  CAS  Google Scholar 

  22. Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Biomacromolecules 7:1687

    Article  CAS  Google Scholar 

  23. Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Biomacromolecules 8:2485

    Article  CAS  Google Scholar 

  24. Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L (2009) Biomacromolecules 10:1992

    Article  CAS  Google Scholar 

  25. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Biomacromolecules 10:2571

    Article  CAS  Google Scholar 

  26. Gümüşkaya E, Usta M, Balaban M (2006) Bioresour Technol 98:491

    Article  Google Scholar 

  27. Wang HM, Postle R, Kessler RW, Kessler W (2003) Text Res J 73:664

    Article  CAS  Google Scholar 

  28. Kostic M, Pejic B, Skundric P (2008) Bioresour Technol 99:94

    Article  CAS  Google Scholar 

  29. Sbiai A, Kaddami H, Sautereau H, Maazouz A, Fleury E (2011) Carbohydr Polym 86:1445

    Article  CAS  Google Scholar 

  30. Milanovic J, Kostic M, Milanovic P, Skundric P (2012) Ind Eng Chem Res 51:9750

    Article  CAS  Google Scholar 

  31. Wise LE, Marphy M, D’Adieco A (1946) Paper Trade J 122:35

    CAS  Google Scholar 

  32. Shinoda R, Saito T, Okita Y, Isogai A (2012) Biomacromolecules 13:842

    Article  CAS  Google Scholar 

  33. Tappi Text Method T 249 cm-00 (2009)

  34. Yamamoto M, Kuramae R, Yanagisawa M, Ishii D, Isogai A (2011) Biomacromolecules 12:3982

    Article  CAS  Google Scholar 

  35. Okita Y, Saito T, Isogai A (2009) Holzforschung 63:529

    Article  CAS  Google Scholar 

  36. Testing method for dissolving pulp. JIS P8101 (1994)

  37. Saito T, Isogai A (2004) Biomacromolecules 5:1983

    Article  CAS  Google Scholar 

  38. Isogai T, Saito T, Isogai A (2011) Cellulose 18:421

    Article  CAS  Google Scholar 

  39. Alexander LE (1979) X-ray diffraction methods in polymer science. Krieger, New York

    Google Scholar 

  40. Okita Y, Saito T, Isogai A (2010) Biomacromolecules 11:1696

    Article  CAS  Google Scholar 

  41. Fujisawa S, Isogai T, Isogai A (2010) Cellulose 17:607

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Suphat Kamthai of Chaing Mai University and Queen Sirikit Botanic Garden, Thailand, who kindly provided the hemp bast sample. This research was supported by Grant-in-Aids for Scientific Research S (21228007) from the Japan Society for the Promotion of Science (JSPS). Buapan Puangsin is a recipient of the Monbu-Kagakusho Scholarship for foreign students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Isogai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puangsin, B., Fujisawa, S., Kuramae, R. et al. TEMPO-Mediated Oxidation of Hemp Bast Holocellulose to Prepare Cellulose Nanofibrils Dispersed in Water. J Polym Environ 21, 555–563 (2013). https://doi.org/10.1007/s10924-012-0548-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-012-0548-9

Keywords

Navigation