Skip to main content
Log in

Cellulose/silver nanoparticles composite microspheres: eco-friendly synthesis and catalytic application

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulose/silver nanoparticles (Ag NPs) composites were prepared and their catalytic performance was evaluated. Porous cellulose microspheres, fabricated from NaOH/thiourea aqueous solution by a sol–gel transition processing, were served as supports for Ag NPs synthesis by an eco-friendly hydrothermal method. The regenerated cellulose microspheres were designed as reducing reagent for hydrothermal reduction and also micro-reactors for controlling growth of Ag NPs. The structure and properties of obtained composite microspheres were characterized by Optical microscopy, UV–visible spectroscopy, WXRD, SEM, TEM and TG. The results indicated that Ag NPs were integrated successfully and dispersed uniformly in the cellulose matrix. Their size (8.3–18.6 nm), size distribution (3.4–7.7 nm), and content (1.1–4.9 wt%) were tunable by tailoring of the initial concentration of AgNO3. Moreover, the shape, integrity and thermal stability were firmly preserved for the obtained composite microspheres. The catalytic performance of the as-prepared cellulose/Ag composite microspheres was examined through a model reaction of 4-nitrophenol reduction in the presence of NaBH4. The composites microspheres exhibited good catalytic activity, which is much high than that of hydrogel/Ag NPs composites and comparable with polymer core–shell particles loading Ag NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ajayan PM, Schadler LS, Braun PV (2004) Nanocomposite science and technology. VCH-Wiley, Weinheim

    Google Scholar 

  • Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han CC, Kuga S (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351

    Article  CAS  Google Scholar 

  • Cai J, Kimura S, Wada M, Kuga S (2009) Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 10:87–94

    Article  CAS  Google Scholar 

  • Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540

    Article  CAS  Google Scholar 

  • Chang C, Peng J, Zhang L, Pang D-W (2009) Strongly fluorescent hydrogels with quantum dots embedded in cellulose matrices. J Mater Chem 19:7771–7776

    Article  CAS  Google Scholar 

  • Corain B, Schmid G, Toshima N (2008) Metal nanoclusters in catalysis and materials science: the issue of size control. Elsevier, Amsterdam

    Google Scholar 

  • Grouchko M, Kamyshny A, Mihailescu CF, Anghel DF, Magdassi S (2011) Conductive inks with a “built-in” mechanism that enables sintering at room temperature. ACS Nano 5:3354–3359

    Article  CAS  Google Scholar 

  • Ke D, Liu S, Dai K, Zhou J, Zhang L, Peng T (2009) CdS/regenerated cellulose nanocomposite films for highly efficient photocatalytic H2 production under visible light irradiation. J Phys Chem C 113:16021–16026

    Article  CAS  Google Scholar 

  • Kumar A, Vemula PK, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236–241

    Article  CAS  Google Scholar 

  • Liang S, Zhang L, Li Y, Xu J (2007) Fabrication and properties of cellulose hydrated membrane with unique structure. Macromol Chem Phys 208:594–602

    Article  CAS  Google Scholar 

  • Liang S, Wu J, Tian H, Zhang L, Xu J (2008) High-strength cellulose/poly(ethylene glycol) gels. Chemsuschem 1:558–563

    Article  CAS  Google Scholar 

  • Liu H, Wang D, Song Z, Shang S (2011) Preparation of silver nanoparticles on cellulose nanocrystals and the application in electrochemical detection of DNA hybridization. Cellulose 18:67–74

    Article  CAS  Google Scholar 

  • Lu Y, Mei Y, Ballauff M, Drechsler M (2006a) Thermosensitive core-shell particles as carrier systems for metallic nanoparticles. J Phys Chem B 110:3930–3937

    Article  CAS  Google Scholar 

  • Lu Y, Mei Y, Drechsler M, Ballauff M (2006b) Thermosensitive core-shell particles as carriers for Ag nanoparticles: modulating the catalytic activity by a phase transition in networks. Angew Chem Int Ed 45:813–816

    Article  CAS  Google Scholar 

  • Lu Y, Mei Y, Walker R, Ballauff M, Drechsler M (2006c) ‘Nano-tree’-type spherical polymer brush particles as templates for metallic nanoparticles. Polymer 47:4985–4995

    Article  CAS  Google Scholar 

  • Lu Y, Mei Y, Schrinner M, Ballauff M, Moeller MW (2007a) In situ formation of Ag nanoparticles in spherical polyacrylic acid brushes by UV irradiation. J Phys Chem C 111:7676–7681

    Article  CAS  Google Scholar 

  • Lu Y, Spyra P, Mei Y, Ballauff M, Pich A (2007b) Composite hydrogels: robust carriers for catalytic nanoparticles. Macromol Chem Phys 208:254–261

    Article  CAS  Google Scholar 

  • Lue A, Zhang L, Ruan D (2007) Inclusion complex formation of cellulose in NaOH–thiourea aqueous system at low temperature. Macromol Chem Phys 208:2359–2366

    Article  CAS  Google Scholar 

  • Luo X, Liu S, Zhou J, Zhang L (2009) In situ synthesis of Fe3O4/cellulose microspheres with magnetic-induced protein delivery. J Mater Chem 19:3538–3545

    Article  CAS  Google Scholar 

  • Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51

    Article  CAS  Google Scholar 

  • Marques PAAP, Nogueira HIS, Pinto RJB, Neto CP, Trindade T (2008) Silver-bacterial cellulosic sponges as active SERS substrates. J Raman Spectrosc 39:439–443

    Article  CAS  Google Scholar 

  • Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  Google Scholar 

  • Polavarapu L, Manga KK, Cao HD, Loh KP, Xu Q-H (2011) Preparation of conductive silver films at mild temperatures for printable organic electronics. Chem Mater 23:3273–3276

    Article  CAS  Google Scholar 

  • Pradhan N, Pal A, Pal T (2002) Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Colloids Surf A 196:247–257

    Article  CAS  Google Scholar 

  • Qi H, Yang Q, Zhang L, Liebert T, Heinze T (2011) The dissolution of cellulose in NaOH-based aqueous system by two-step process. Cellulose 18:237–245

    Article  CAS  Google Scholar 

  • Saha S, Pal A, Kundu S, Basu S, Pal T (2010) Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26:2885–2893

    Article  CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  CAS  Google Scholar 

  • Shin Y, Bae I-T, Arey BW, Exarhos GJ (2008) Facile stabilization of gold–silver alloy nanoparticles on cellulose nanocrystal. J Phys Chem C 112:4844–4848

    Article  CAS  Google Scholar 

  • Song J, Birbach NL, Hinestroza JP (2012) Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups. Cellulose 19:411–424

    Article  CAS  Google Scholar 

  • Sureshkumar M, Siswanto DY, Lee C-K (2010) Magnetic antimicrobial nanocomposite based on bacterial cellulose and silver nanoparticles. J Mater Chem 20:6948–6955

    Article  CAS  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  • Tang S, Vongehr S, Meng X (2010) Carbon spheres with controllable silver nanoparticle doping. J Phys Chem C 114:977–982

    Article  CAS  Google Scholar 

  • Wu J, Liang S, Dai H, Zhang X, Yu X, Cai Y, Zheng L, Wen N, Jiang B, Xu J (2010) Structure and properties of cellulose/chitin blended hydrogel membranes fabricated via a solution pre-gelation technique. Carbohydr Polym 79:677–684

    Article  CAS  Google Scholar 

  • Yan L, Gao Z (2008) Dissolving of cellulose in PEG/NaOH aqueous solution. Cellulose 15:789–796

    Article  CAS  Google Scholar 

  • Yang G, Xie J, Deng Y, Bian Y, Hong F (2012) Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a “green” route for antibacterial application. Carbohydr Polym 87:2482–2487

    Article  CAS  Google Scholar 

  • Zeng J, Liu S, Cai J, Zhang L (2010) TiO2 Immobilized in cellulose matrix for photocatalytic degradation of phenol under weak UV light irradiation. J Phys Chem C 114:7806–7811

    Article  CAS  Google Scholar 

  • Zhang H, Wu J, Zhang J, He JS (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277

    Article  CAS  Google Scholar 

  • Zhang H, Li X, Chen G (2009) Ionic liquid-facilitated synthesis and catalytic activity of highly dispersed Ag nanoclusters supported on TiO(2). J Mater Chem 19:8223–8231

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by The National Natural Science Foundation of China (Grant No. 50821062, 21121001), Ministry of Science and Technology (2009CB623401) and Open-end Fund of Engineering Research Center of Biomass Modified Materials, Sichuan Province (No. 2210zxfk22).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Zhao or Jian Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, J., Zhao, N., Zhang, X. et al. Cellulose/silver nanoparticles composite microspheres: eco-friendly synthesis and catalytic application. Cellulose 19, 1239–1249 (2012). https://doi.org/10.1007/s10570-012-9731-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9731-3

Keywords

Navigation