Skip to main content
Log in

Characterisation of amino acid modified cellulose surfaces using ToF-SIMS and XPS

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Cellulosic fibrous networks are modified using 3 different amino acids; small (Glycine, Gly), aliphatic (Leucine, Leu) and aromatic (Phenylalanine, Phe). The effect of amino acid functionality on chemical coupling to cellulose fibres in terms of their coverage and packing density are investigated. Different amino acid modified cellulose networks are characterised by using Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and X-ray Photoelectron Spectroscopy (XPS). The presence of amino acids is confirmed using ToF-SIMS. The quantitative distribution of different amino acids across the cellulose surface is assessed by using XPS. It is shown that the packing density of amino acids depends on the size of the side chain; smaller amino acids (Gly, Leu) tend to couple to the surface at higher density compared to larger ones (Phe). This study has implications for the functionalisation of polysaccharide materials for a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bagheri M, Rodríguez H, Swatloski RP, Spear SK, Daly DT, Rodgers RD (2008) Ionic liquid-based preparation of cellulose—dendrimer films as solid supports for enzyme immobilization. Biomacromolecules 9:381–387

    Article  CAS  Google Scholar 

  • Brewer NJ, Foster TT, Leggett GJ, Alexander MR, McAlpine E (2004) Comparative investigations of the packing and ambient stability of self-assembled monolayers of alkanethiols on gold and silver by friction force microscopy. J Phys Chem B 108:4723–4728

    Article  CAS  Google Scholar 

  • Brüning C, Hellweg S, Dambach S, Lipinsky D, Arlinghaus HF (2006) Improving the interpretation of ToF-SIMS measurements on adsorbed proteins using PCA. Surf Interface Anal 38:191–193

    Article  Google Scholar 

  • Buchholz V, Adler P, Bäcker M, Hölle W, Simon A, Wegner G (1997) Regeneration and hydroxyl accessibility of cellulose in ultrathin films. Langmuir 13:3206–3209

    Article  CAS  Google Scholar 

  • Cunha AG, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Orblin E, Fardim P (2007) Highly hydrophobic biopolymers prepared by the surface pentafluorobenzoylation of cellulose substrates. Biomacromolecules 8:1347–1352

    Article  CAS  Google Scholar 

  • Dambach S, Fartmann M, Kriegeskotte C, Bruning C, Hellweg S, Wiesmann HP, Lipinsky D, Arlinghaus HF (2004) ToF-SIMS and laser-SNMS analysis of apatite formation in extracellular protein matrix of osteoblasts in vitro. Surf Interface Anal 36:711–715

    Article  CAS  Google Scholar 

  • Derda R, Laromain A, Mammoto A, Tang SKY, Mammoto T, Ingber DE, Whitesides GM (2009) Paper-supported 3D cell culture for tissue-based bioarrays. PNAS 106:18457–18462

    Article  CAS  Google Scholar 

  • Dorris GM, Gray DG (1978a) The surface analysis of paper and wood fibres by ESCA (electron spectroscopy for chemical analysis). I. Application to cellulose and lignin. Cellul Chem Technol 12:9–23

    CAS  Google Scholar 

  • Dorris GM, Gray DG (1978b) The surface analysis of paper and wood fibres by ESCA. II. Surface composition of mechanical pulps. Cellul Chem Technol 12:721–734

    CAS  Google Scholar 

  • Edgar KJ, Buchanan CM, Debenem JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688

    Article  CAS  Google Scholar 

  • Enjalbal C, Maux D, Subra G, Martinez J, Combarieu R, Aubagnac JL (1999) Monitoring and quantification on solid support of a by-product formation during peptide synthesis by Tof-SIMS. Tetrahedron Lett 40:6217–6220

    Article  CAS  Google Scholar 

  • Fardim P, Gustafsson J, von Schoultz S, Peltonen J, Holmborn B (2005) Extractives on fiber surfaces investigated by XPS, ToF-SIMS and AFM. Coll Surf A 255:91–103

    Article  CAS  Google Scholar 

  • Frank R (1992) Spot-synthesis—an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48:9217–9232

    Article  CAS  Google Scholar 

  • Frank R (2002) The SPOT synthesis technique—synthetic peptide arrays on membrane supports—principles and applications. J Immunol Methods 267:13–26

    Article  CAS  Google Scholar 

  • Frank R, Doring R (1988) Simultaneous multiple peptide-synthesis under continuous-flow conditions on cellulose paper disks as segmental solid supports. Tetrahedron 44:6031–6040

    Article  CAS  Google Scholar 

  • Granitza D, Beyermann M, Wenschuh H, Haber H, Carpino L, Truran G, Bienert M (1995) Efficient acylation of hydroxy functions by means of fmoc amino-acid fluorides. J Chem Soc Chem Comm 2223–2224

  • Gustafsson J, Lehto JH, Tienvieri T, Ciovica L, Peltonen J (2003) Surface characteristics of thermomechanical pulps; the influence of defibration temperature and refining. Colloids Surf A Physicochem Eng Asp 225:95–104

    Article  CAS  Google Scholar 

  • Heinze T, Liebert T (2001) Unconventional methods in cellulose functionalization. Prog Polym Sci 26:1689–1762

    Article  CAS  Google Scholar 

  • Heinze T, Dorn S, Schöbitz M, Liebert T, Köhler S, Meister F (2008) Interactions of ionic liquids with polysaccharides 2: cellulose. Macromol Symp 262:8–22

    Article  CAS  Google Scholar 

  • Hua XJ, Kaliaguine S, Kokta BV (1993) Application of SIMS in polymers and lignocellulosic materials. J Appl Polym Sci 48:1–12

    Article  CAS  Google Scholar 

  • Istone WK (1995) X-ray photoelectron spectroscopy (XPS). In: Conners TE, Banerjee S (eds) Surface analysis of paper. CRC Press, New York, pp 235–268

    Google Scholar 

  • Johansson L-S, Campbell JM, Koljonen K, Stenius P (1999) Evaluation of surface lignin on cellulose fibres with XPS. Appl Surf Sci 144–145:92–95

    Article  Google Scholar 

  • Kalaskar DM, Gough JE, Ulijn RV, Sampson WW, Scurr DJ, Rutten FJ, Alexander MR, Merry CLR, Eichhorn SJ (2008) Controlling cell morphology on amino acid-modified cellulose. Soft Matter 4:1059–1065

    Article  CAS  Google Scholar 

  • Kato R, Kaga C, Kunimatsu M, Kobayashi T, Honda H (2006) Peptide array-based interaction assay of solid-bound peptides and anchorage-dependant cells and its effectiveness in cell-adhesive peptide design. J Biosci Bioeng 101:485–495

    Article  CAS  Google Scholar 

  • Kaya A, Du X, Liu Z, Lu JW, Morris JR, Glasser WG, Heinze T, Esker AR (2009) Surface Plasmon resonance studies of pullulan and pullulan cinnamate adsorption onto cellulose. Biomacromolecules 10:2451–2459

    Article  CAS  Google Scholar 

  • Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry: v. 2: functionalization of cellulose: functionalization of cellulose. Wiley-VCH, Weinheim

    Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Koda S, Hori T, Nomura H, Kawaizumi F (1991) Hydration of methyl cellulose. Polymer 32:2806–2810

    Article  CAS  Google Scholar 

  • Koljonen K, Osterberg M, Johannson LS, Stenius P (2003) Surface chemistry and morphology of different mechanical pulps determined by ESCA and AFM. Colloids Surf A Physicochem Eng Asp 228:143–158

    Article  CAS  Google Scholar 

  • Kontturi E, Thune PC, Niemantsverdriet JW (2003) Novel method for preparing cellulose model surfaces by spin coating. Polymer 44:3621–3625

    Article  CAS  Google Scholar 

  • Kontturi E, Thüne PC, Niemantsverdriet JW (2005) Trimethylsilylcellulose/polystyrene blends as a means to construct cellulose domains on cellulose. Macromolecules 38:10712–10720

    Article  CAS  Google Scholar 

  • Kontturi E, Johansson L-S, Kontturi KS, Ahonen P, Thüne PC, Laine J (2007) Cellulose nanocrystal submonlayers by spin coating. Langmuir 23:9674–9680

    Article  CAS  Google Scholar 

  • Kontturi KS, Tammelin T, Johansson L-S, Stenius P (2008) Adsorption of cationic starch on cellulose studied by QCM-D. Langmuir 24:4743–4749

    Article  CAS  Google Scholar 

  • Kontturi E, Johansson L-S, Laine J (2009) Cellulose decorated cavities on ultrathin films of PMMA. Soft Matter 5:1786–1788

    Article  CAS  Google Scholar 

  • Malmsten M, Lindman B (1990) Ellipsometry studies of the adsorption of cellulose ethers. Langmuir 6:357–364

    Article  CAS  Google Scholar 

  • Malmsten M, Claesson PM, Pezron E, Pezron I (1990) Temperature-dependent forces between hydrophobic surfaces coated with ethyl (hydroxyethyl) cellulose. Langmuir 6:1572–1578

    Article  CAS  Google Scholar 

  • Maximova N, Osterberg M, Koljonen K, Stenius P (2001) Lignin adsorption on cellulose fibre surfaces: effect on surface chemistry, surface morphology and paper strength. Cellulose 8:113–125

    Article  CAS  Google Scholar 

  • Mitchell R, Carr CM, Parfitt M, Vickerman JC, Jones C (2005) Surface chemical analysis of raw cotton fibres and associated materials. Cellulose 12:629–639

    Article  CAS  Google Scholar 

  • Rawsterne RE, Todd SJ, Gough JE, Farrar D, Rutten FJM, Alexander M, Ulijn RV (2007) Cell spreading correlates with calculated logP of amino acid-modified surfaces. Acta Biomaterialia 3:715–721.

    Article  CAS  Google Scholar 

  • Rojas OJ, Ernstsson M, Neuman RD, Claesson PM (2000) X-ray photoelectron spectroscopy in the study of polyelectrolyte adsorption on mica and cellulose. J Phys Chem B 104:10032–10042

    Article  CAS  Google Scholar 

  • Roy D, Semsarilar M, Guthrie JT, Perrier S (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064

    Article  CAS  Google Scholar 

  • Tiller J, Berlin P, Klemm D (1999) Soluble and film-forming cellulose derivatives with redox-chromogenic and enzyme immobilizing 1,4-phenylenediamine groups. Macromol Chem Phys 200:1–9

    Article  CAS  Google Scholar 

  • Verlhac C, Dedier J, Chanzy H (1990) Availability of surface hydroxyl-groups in valonia and bacterial cellulose. J Polym Sci A 28:1171–1177

    Article  CAS  Google Scholar 

  • Yuan H, Nishiyama Y, Wada M, Kuga S (2006) Surface acylation of cellulose whiskers by drying aqueous emulsion. Biomacromolecules 7:696–700

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the EPSRC for funding (Grant nos. EP/C0049301, EP.C004507/1 and EP/C004558/1) and to the ORS (Overseas Research Scholarship) and the University of Manchester for funding a doctoral studentship. We gratefully acknowledge a contribution to ToF-SIMS equipment facilities by the East Midlands Development Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Eichhorn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalaskar, D.M., Ulijn, R.V., Gough, J.E. et al. Characterisation of amino acid modified cellulose surfaces using ToF-SIMS and XPS. Cellulose 17, 747–756 (2010). https://doi.org/10.1007/s10570-010-9413-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9413-y

Keywords

Navigation