Skip to main content
Log in

Optimization of Growth for Nitrilase Producing Bacteria

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Nitrilase (EC 3.5.5.1) is an important biological catalyst with industrial application, which can directly convert nitrile compounds into corresponding carboxylic acids and ammonia under mild conditions. Nitrilase is used to convert molecules containing nitrile groups into carboxylic acid derivatives, and it is also used in many industries such as the textile industry. Studies should be conducted on the production of nitrilase, which is widely used in industry and has the potential to be used in other industrial areas, from different sources. Since reducing the cost in the industry will reflect positively on the consumer, high-activity nitrilases should be obtained. For this purpose, optimization of the production mediums gains importance in the production of nitrilase from microbial sources. The present study deals with the production and optimization of the microbial nitrilase (EC 3.5.5.1). Microbial strains stored in the laboratory were used in this study. All selected strains (Pseudomonas aeruginosa (ATCC 27853), Enterococcus faecalis (ATCC 29212), Pseudomonas putida (ATCC 17514), Pseudomonas fluorescens (DSM 6521), Pseudomonas oleovorans (DSM 50188), and Micrococcus luteus (DSM 20030)) from stock were screened on 3 different mediums. The acetonitrile showed to be an inducer for nitrilase production. The most active bacterium produced about 41.11 U/ml of nitrilase activity and was identified as Pseudomonas putida (ATCC 17514). Maximum nitrilase production was obtained using the medium (3) with 0.50 g/L (v/v) acetonitrile as an inducer. The effects of different parameters (chemical and physical) on the nitrilase (EC 3.5.5.1) production were studied. When bacterial growth at pH 8.0 and 28 ºC was cultured for 20 h, and medium containing starch as a carbon source and peptone-yeast extract as a nitrogen source, the nitrilase activity peaked at 172.76 U/ml. Enzyme activity could be increased 4.2 times with optimization studies. By optimization of enzyme production, a significant increase in activity may be achieved. In this study, when compared with similar studies about nitrilase production from bacteria in the literature, high-activity nitrilase production from Pseudomonas putida (ATCC 17514) was achieved.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ramteke PW, Maurice NG, Joseph B, Wadher BJ (2013) Nitrile-converting enzymes: an eco-friendly tool for industrial biocatalysis. Biotechnol Appl Biochem 60:459–481

    Article  CAS  PubMed  Google Scholar 

  2. Dennett GV, Blamey JM (2016) A new thermophilic nitrilase from an antarctic hyperthermophilic microorganism. Front Bioeng Biotechnol 4:1–9

    Article  Google Scholar 

  3. Toprak A, Tükel SS, Deniz Yildirim D (2021) Stabilization of multimeric nitrilase via different immobilization techniques for hydrolysis of acrylonitrile to acrylic acid. Biocatal Biotransfor 39:221–231

    Article  CAS  Google Scholar 

  4. Ogunyemi AK, Buraimoh OM, Ogunyemi BC, Samuel TA, Ilori MO, Amund OO (2022) Nitrilase gene detection and nitrile metabolism in two bacterial strains associated with waste streams in Lagos, Nigeria. Bull Natl Res Cent 46:151–161

    Article  Google Scholar 

  5. Banerjee A, Sharma R, Banerjee UC (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60:33–44

    Article  CAS  PubMed  Google Scholar 

  6. Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Fact 11:142–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang X, Wang C, Ge Y, Meng Q, Zhang Y (2022) Constitutive secretory expression and characterization of nitrilase from Alcaligenes faecalis in Pichia pastoris for production of R-mandelic acid. Biotechnol Appl Biochem 69:587–595

    Article  CAS  PubMed  Google Scholar 

  8. Babu V, Shilpi CB (2010) Nitrile-metabolizing potential of Amycolatopsis sp. IITR215. Process Biochem 45:866–873

    Article  CAS  Google Scholar 

  9. Zou SP, Huang JW, Xue YP, Zheng YG (2018) Highly efficient production of 1-cyanocyclohexaneacetic acid by cross-linked cell aggregates (CLCAs) of recombinant E. coli harboring nitrilase gene. Process Biochem 65:93–99

    Article  CAS  Google Scholar 

  10. Xie ZY, Feng JL, Garcia E, Bernett M, Yazbeck D, Tao JH (2006) Cloning and optimization of a nitrilase for the synthesis of (3S)-3-cyano-5-methyl hexanoic acid. J Mol Catal B: Enzym 41:75–80

    Article  CAS  Google Scholar 

  11. Cooling FB, Fager SK, Fallon RD, Folsom PW, Gallagher FG, Gavagan JE, Hann EC, Herkes FE, Phillips RL, Sigmund A, Wagner LW, Wu W, DiCosimo R (2001) Chemoenzymatic production of 1,5-dimethyl-2-piperidone. J Mol Catal B: Enzym 11:295–306

    Article  CAS  Google Scholar 

  12. Shaw NM, Robins KT, Kiener A (2003) Lonza: 20 years of biotransformations. Adv Synth Catal 345:425–435

    Article  CAS  Google Scholar 

  13. Liu ZQ, Zhang XH, Xue YP, Xu M, Zheng YG (2014) Improvement of Alcaligenes faecalis nitrilase by gene site saturation mutagenesis and its application in stereospecific biosynthesis of (R)-(−)-mandelic acid. J Agric Food Chem 62:4685–4694

    Article  CAS  PubMed  Google Scholar 

  14. Zhang XH, Liu ZQ, Xue YP, Wang YS, Yang B, Zheng YG (2017) Production of R-mandelic acid using nitrilase from recombinant E. coli cells immobilized with tris (hydroxymethyl) phosphine. Appl Biochem Biotechnol 184:1024–1035

    Article  PubMed  Google Scholar 

  15. Xue YP, Shi CC, Xu Z, Jiao B, Liu ZQ, Huang JF, Zheng YG, Shen YC (2015) Design of nitrilases with superior activity and enantioselectivity towards sterically hindered nitrile by protein engineering. Adv Synth Catal 357:1741–1750

    Article  CAS  Google Scholar 

  16. Xue YP, Jiao B, Hua DE, Cheng F, Liu ZQ, Zheng YG (2017) Improving catalytic performance of an arylacetonitrilase by semirational engineering. Bioprocess Biosyst Eng 40:1565–1572

    Article  CAS  PubMed  Google Scholar 

  17. Panova A, Mersinger LJ, Liu Q, Foo T, Roe DC, Spillan WL, Sigmund AE, Ben-Bassat A, Wagner LW, O’Keefe DP, Wu S, Petrillo KL, Payne MS, Breske ST, Gallagher FG, DiCosimo R (2007) Chemoenzymatic synthesis of glycolic acid. Adv Synth Catal 349:1462–1474

    Article  CAS  Google Scholar 

  18. Thuku RN, Brady D, Benedik MJ, Sewell BT (2009) Microbial nitrilases: versatile spiral forming, industrial enzymes. J Appl Microbiol 106:703–727

    Article  CAS  PubMed  Google Scholar 

  19. Gupta V, Gaind S, Verma PK, Sood N, Srivastava AK (2010) Purification and characterization of intracellular nitrilases from Rhodococcus sp.- potential role of periplasmic nitrilase. Afr J Microbiol Res 4:1148–1153

    CAS  Google Scholar 

  20. O’Reilly C, Turner PD (2003) The nitrilase family of CN hydrolysing enzymes—a comparative study. J Appl Microbiol 95:1161–1174

    Article  PubMed  Google Scholar 

  21. Vejvoda V, Kubáč D, Davidová A, Kaplan O, Šulc M, Šveda O, Martínková L (2010) Purification and characterization of nitrilase from Fusarium solani IMI196840. Process Biochem 45:1115–1120

    Article  CAS  Google Scholar 

  22. Petříčková A, Veselá AB, Kaplan O, Kubáč D, Uhnáková B, Malandra A, Felsberg J, Rinágelová A, Weyrauch P, Křen V, Bezouška K, Martínková L (2012) Purification and characterization of heterologously expressed nitrilases from filamentous fungi. Appl Microbiol Biotechnol 93:1553–1561

    Article  PubMed  Google Scholar 

  23. Sharma NN, Sharma M, Bhalla TC (2011) An improved nitrilase-mediated bioprocess for synthesis of nicotinic acid from 3-cyanopyridine with hyperinduced Nocardia globerula NHB-2. J Ind Microbiol Biotechnol 38:1235–1243

    Article  CAS  PubMed  Google Scholar 

  24. Schreiner U, Hecher B, Obrowsky S, Waich K, Klempier N, Steinkellner G, Gruber K, Rozzell JD, Glieder A, Winkler M (2010) Directed evolution of Alcaligenes faecalis nitrilase. Enzyme Microb Technol 47:140–146

    Article  CAS  Google Scholar 

  25. Martínková L, Vejvoda V, Kaplan O, Kubác D, Malandra A, Cantarella M (2009) Fungal nitrilases as biocatalysts: recent developments. Biotechnol Adv 27:661–670

    Article  PubMed  Google Scholar 

  26. Shen M, Liu ZQ, Zheng YG, Shen YC (2009) Enhancing Endo-nitrilase production by a newly isolated Arthrobacter nitroguajacolicus ZJUTB06-99 through optimization of culture medium. Biotechnol Bioproc Eng 14:795–802

    Article  CAS  Google Scholar 

  27. Zhu D, Mukherjee C, Yang Y, Rios BE, Gallagher DT, Smith NN, Biehl ER, Hua L (2007) A new nitrilase from Bradyrhizobium japonicum USDA 110: gene cloning, biochemical characterization, and substrate specificity. J Biotechnol 133:327–333

    Article  PubMed  Google Scholar 

  28. Kaplan O, Vejvoda V, Plíhal O, Pompach P, Kavan D, Bojarová P, Bezouška K, Macková M, Cantarella M, Jirků V, Křen V, Ludmila Martínková L (2006) Purification and characterization of a nitrilase from Aspergillus niger K10. Appl Microbiol Biotechnol 73:567–575

    Article  CAS  PubMed  Google Scholar 

  29. Banerjee A, Kaul P, Banerjee UC (2006) Purification and characterization of an enantioselective arylacetonitrilase from Pseudomonas putida. Arch Microbiol 184:407–418

    Article  CAS  PubMed  Google Scholar 

  30. Banerjee A, Kaul P, Banerjee UC (2006) Enhancing the catalytic potential of nitrilase from Pseudomonas putida for stereoselective nitrile hydrolysis. Appl Microbiol Biotechnol 72:77–87

    Article  CAS  PubMed  Google Scholar 

  31. Naik SC, Kaul P, Barse B, Banerjee A, Banerjee UC (2008) Studies on the production of enantioselective nitrilase in a stirred tank bioreactor by Pseudomonas putida MTCC 5110. Bioresour Technol 99:26–31

    Article  CAS  PubMed  Google Scholar 

  32. Fischer-Colbrie G, Matama T, Heumann S, Martinkova L, Paulo AC, Guebitz G (2007) Surface hydrolysis of polyacrylonitrile with nitrile hydrolysing enzymes from Micrococcus luteus BST20. J Biotechnol 129:62–68

    Article  CAS  PubMed  Google Scholar 

  33. Vikas V, Preeti S (2015) Soil as a Source for potential nitrilase producer. All Res J Biol 6:10–15

    Google Scholar 

  34. Shariati-Rad M, Qanei S (2022) Determination of ammonia based on experimental design and Berthelot reaction. J Environ Anal Chem. https://doi.org/10.1080/03067319.2022.2106429

    Article  Google Scholar 

  35. Zhu X, Gong J, Li H, Lu Z, Zhou Z, Shi J, Xu Z (2014) Screening, identification and culture optimization of a newly isolated aromatic nitrilase-producing bacterium-Pseudomonas putida CGMCC3830. Chin J Biotechnol 30:412–424

    CAS  Google Scholar 

  36. Badoei-Dalfard A, Ramezani-Pour N, Karami Z (2016) Production and characterization of a nitrilase from Pseudomonas aeruginosa RZ44 and its potential for nitrile biotransformation. Iran J Biotechnol 14:142–153

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ramezani-Pour N, Badoei-Dalfard A, Namaki-Shoushtari A, Karami Z (2015) Nitrile-metabolizing potential of Bacillus cereus strain FA12; Nitrilase production, purification, and characterization. Biocatal Biotransfor 33:156–166

    Article  CAS  Google Scholar 

  38. Komeda H, Harada H, Washika S, Sakamoto T, Ueda M, Asano Y (2004) A novel R-stereo selective amidase from Pseudomonas sp. MCI3434 acting on piperazine-2-tertbutyl carboxamide. Eur J Biochem 271:1580–1590

    Article  CAS  PubMed  Google Scholar 

  39. Kim JS, Tiwari MK, Moon HJ, Jeya M, Ramu T, Oh DK, Kim IW, Lee JK (2009) Identification and characterization of a novel nitrilase from Pseudomonas fluorescens Pf-5. Appl Microbiol Biotechnol 83:273–283

    Article  CAS  PubMed  Google Scholar 

  40. Kiziak C, Stolz A (2009) Identification of amino acid residues responsible for the enantioselectivity and amide formation capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Appl Environ Microbiol 75:5592–5599

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. Kumar S, Mohan U, Kamble AL, Pawar S, Banerjee UC (2010) Cross-linked enzyme aggregates of recombinant Pseudomonas putida nitrilase for enantioselective nitrile hydrolysis. Bioresour Technol 101:6856–6858

    Article  CAS  PubMed  Google Scholar 

  42. Agarwal A, Nigam VK (2014) Nitrilase mediated conversion of Indole-3-acetonitrile to Indole-3-acetic acid. Biocatal Agric Biotechnol 3:351–357

    Article  Google Scholar 

  43. Makhongela HS, Glowacka AE, Agarkar VB, Sewell BT, Weber B, Cameron RA (2007) A novel thermostable nitrilase superfamily amidase from Geobacillus pallidus showing acyl transfer activity. Appl Microbiol Biotechnol 75:801–811

    Article  CAS  PubMed  Google Scholar 

  44. Chand D, Kumar H, Sankhian UD, Kumar D, Vitzthum F, Bhalla TC (2004) Treatment of simulated wastewater containing toxic amides by immobilized Rhodococcus rhodochrous NHB-2 using a highly compact 5-stage plug flow reactor. World J Microbiol Biotechnol 20:679–686

    Article  CAS  Google Scholar 

  45. Reisinger Ch, Osprian I, Glieder A, Schoemaker HE, Griengl H, Schwab H (2004) Enzymatic hydrolysis of cyanohydrins with recombinant nitrile hydratase and amidase from Rhodococcus erythropolis. Biotechnol Lett 26:1675–1680

    Article  CAS  PubMed  Google Scholar 

  46. Ma Y, Yu HM, Pan W, Liu C, Zhang S, Shen Z (2010) Identification of nitrile hydratase-producing Rhodococcus ruber TH and characterization of an amiE-negative mutant. Bioresour Technol 101:285–291

    Article  CAS  PubMed  Google Scholar 

  47. Dong HP, Liu ZQ, ZhengYG ShenYC (2011) Medium optimization for nitrilase production by newly isolated Rhodococcus erythropolis ZJB-0910 using statistical designs. Chem Biochem Eng 25:351–358

    CAS  Google Scholar 

  48. He YC, Xu JH, Xu Y, Ouyang LM, Pan J (2007) Biocatalytic synthesis of (R)-(-)-mandelic acid from racemic mandelonitrile by a newly isolated nitrilase-producer Alcaligenes sp. ECU0401. Chin Chem Lett 18:677–680

    Article  CAS  Google Scholar 

  49. He YC, Xu JH, Su JH, Zhou L (2010) Bioproduction of glycolic acid from glycolonitrile with a new bacterial isolate of Alcaligenes sp. ECU0401. Appl Biochem Biotechnol 160:1428–1440

    Article  CAS  PubMed  Google Scholar 

  50. Dinarvand M, Rezaee M, Masomian M, Jazayeri SD, Zareian M, Abbasi S, Ariff AB (2013) Effect of C/N ratio and media optimization through response surface methodology on simultaneous productions of intra- and extracellular inulinase and invertase from Aspergillus niger ATCC 20611. Biomed Res Int 2013:1–13

    Article  Google Scholar 

  51. Klinfoong R, Thummakasorn C, Ungwiwatkul S, Boontanom P, Chantarasiri A (2022) Diversity and activity of amylase-producing bacteria isolated from mangrove soil in Thailand. Biodiversitas 23:5519–5531

    Article  Google Scholar 

  52. Aiyer PVD (2004) Effect of C: N ratio on alpha amylase production by Bacillus licheniformis SPT 27. Afr J Biotechnol 3:519–522

    Article  CAS  Google Scholar 

  53. Huang S, Huang D, Wu Q, Hou M, Tang X, Zhou J (2020) Effect of environmental C/N ratio on activities of lignin-degrading enzymes produced by Phanerochaete chrysosporium. Pedosphere 30:285–292

    Article  CAS  Google Scholar 

  54. Nageshwar YVD, Sheelu G, Shambhu RR, Muluka H, Mehdi N, Malik MS, Kamal A (2010) Optimization of nitrilase production from Alcaligenes faecalis MTCC 10757 (IICT-A3): effect of inducers on substrate specificity. Bioprocess Biosyst Eng 34:515

    Article  PubMed  Google Scholar 

  55. Bisswanger H (2014) Enzyme assays Perspect Sci 1:41–55

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Akkaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Supplementary file2 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malaka, N.C., Akkaya, A. Optimization of Growth for Nitrilase Producing Bacteria. Catal Lett 154, 1232–1241 (2024). https://doi.org/10.1007/s10562-023-04377-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04377-0

Keywords

Navigation