Skip to main content
Log in

Microbial Enzymatic Degradation, Spectral Analysis and Phytotoxicity Assessment of Congo Red Removal By Bacillus spp.

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The textile industry is a leading contributor to water pollution. Therefore, there is a need for economic and environmental efforts to manage the textile industry’s wastewater. The present study used five bacterial strains, isolated from various Tunisian biotopes, to be characterized and screened for Congo Red (CR) decolorization, for the first time. Firstly, the isolated strains were subjected to standard cultural, microscopically, biochemical, antibiotic susceptibility and biofilm formation assays. The strain ST9 was partially identified as Bacillus spp. strain ST9. Secondly, the newly bacterial isolates crude filtrates were able to decolorize CR, generally recalcitrant to biodegradation due to its xenobiotic nature. Thus, only SM2 and ST9 strains prove their effectiveness for CR (150 mg L−1) total degradation. More than 5.5 mg L−1 h−1 of CR could be decolorized using ST9 filtrate under non-optimized conditions. UV–Visible and FT–IR analysis showed a decolorization and/or a transformation of CR, proving the role of the enzyme in dye decolorization. In fact, the azo dyes degradation was confirmed by the disparition of the characteristic peak at 499 nm and of the peaks located in the range 1610–1630 cm−1 and at 1600 cm−1 due to the azo bonds and the characteristic C=C band of the aromatic ring of CR, respectively. Combinning FTIR and UV–Vis spectra confirms the CR degradation using only SM2 and ST9 filtrates. The results showed CR has been degraded into nontoxic compounds evaluated by (1) phytotoxic assay on tomato, radish and watercress, and (2) cyto-toxicity assay in Vero cells. Furthermore, toxicity studies observed that the by-products from degradation by SM1 crude filtrate was not toxic to plants and less toxic to Vero cells as compared to pure CR. This work reported on the biodegradation of CR by bacterial crude filtrates, as green biocatalysts, which could be a potential candidate for the removal and detoxication of CR from textile wastewater.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Benkhaya S, El Harfi S, El Harfi A (2017) Appl J Envir Eng Sci 3:311–320

    Google Scholar 

  2. Bruma A, Ramli I, Paz-Borbón LO et al (2013) Nanoscale 5:646–652

    Article  CAS  PubMed  Google Scholar 

  3. Ballay D, Blais JF (1998) Rev Sci Eau 77:86

    Google Scholar 

  4. Nevine KA (2008) Desalination 223:152–161

    Article  Google Scholar 

  5. Rodriguez A, Garcia J, Ovejerog G et al (2009) J Hazard Mater 172:1311–1320

    Article  CAS  PubMed  Google Scholar 

  6. Talha AM, Goswami M, Giri BS et al (2018) Bioresour Technol 252:37–43

    Article  PubMed  Google Scholar 

  7. Lade H, Govindwar S, Paul D (2015) Int J Environ Res Pub Health 12:6894–6918

    Article  CAS  Google Scholar 

  8. Shalini Y, Setty P (2019) Biochem Eng J 152:107368

    Article  CAS  Google Scholar 

  9. Bharti V, Vikrant K, Goswami M et al (2019) Environ Res 171:356–364

    Article  CAS  PubMed  Google Scholar 

  10. Ben Younes S, Dallali C, Ellafi A et al (2020) Catal Lett 151:1248–1261

    Article  Google Scholar 

  11. Fernanda M, Munari A, Tamara A et al (2008) World J Microbiol Biotechnol 24:1383–1392

    Article  Google Scholar 

  12. Ajaz M, Shakeel S, Rehman A (2020) Int Microbiol 23:149–159

    Article  CAS  PubMed  Google Scholar 

  13. Bartholomew JW, Mittwer T (1952) Bacteriol. Rev Mar 16:1–29

    CAS  Google Scholar 

  14. Winker S, Woese CR (1991) Syst Appl Microbiol 14(1991):305–310

    Article  CAS  PubMed  Google Scholar 

  15. Hall TA (1999) Nucleic Acids Symposium Series. Information Retrieval Ltd., London, pp 95–98

    Google Scholar 

  16. Tamura K, Stecher G, Kumar S (2021) Mol Biol Evol 38:3022–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Taieb I, Ben Younes S, Messai B et al (2021) Sustainability 13:10072–10090

    Article  CAS  Google Scholar 

  18. Freeman DJ, Falkiner FR, Keane CT (1989) J Clin Pathol 42:872–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ben Abdallah F, Chaieb K, Zmantar T et al (2009) Braz J Microbiol 40:394–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chaieb K, Chehab O, Zmantar T et al (2007) Ann Microbiol 57:431–437

    Article  CAS  Google Scholar 

  21. Sun Y, Wang W, Zheng F et al (2020) Chemosphere 251:126432

    Article  CAS  PubMed  Google Scholar 

  22. Huang WY, Lee MS, Lin LM et al (2020) Pediatr Neonatol 61:420–425

    Article  PubMed  Google Scholar 

  23. Ben Younes S, Bouallagui Z, Sayadi S (2012) J Mol Catal B Enzym 79:41–48

    Article  CAS  Google Scholar 

  24. Ayandele AA, Oladipo EK, Oyebisi O et al (2020) Qatar Med J 2020:9–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dever LA, Dermody TS (1991) Arch Intern Med 151:886–895

    Article  CAS  PubMed  Google Scholar 

  26. Ophir T, Gutnick DL (1994) Appl Environ Microbiol 60:740–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Milanov D, Lazi S, Vidi B et al (2010) Acta Veterinaria (Beograd) 60:217–226

    Article  Google Scholar 

  28. Hamadi NK, Swaminathan S, Chen XD (2004) J Hazard Mater 112:133–141

    Article  CAS  PubMed  Google Scholar 

  29. Snoussi M, Noumi E, Cheriaa J et al (2008) New Microbiol 31:489–500

    CAS  PubMed  Google Scholar 

  30. Donlan RM, Costerton JW (2002) Clin Microbiol Rev 15:167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Victor H, Ganda V, Kiranadi B, et al (2020) KnE Life Sciences 5:102–110

  32. Rashmi M, Savitha K (2012) The IUP Journal of Genetics & Evolution 5:53–62

    Google Scholar 

  33. Ben Younes S, Cherif I, Dhouib A et al (2016) Catal Lett 146:204–211

    Article  CAS  Google Scholar 

  34. Ben Mansour H, Boughzala O, Barillier D et al (2011) J Wat Sci 24:209–238

    CAS  Google Scholar 

  35. Abo-State MAM, Saleh YE, Hazaa HA (2017) J Eco Heal Env 5:41–48

    Google Scholar 

  36. Raj DS, Prabha RJ, Leena R (2012) J Ind Pollut Control 28:57–62

    CAS  Google Scholar 

  37. Sundarajoo A, Maniyam MN (2019) J Adv Res Design 62:1–9

    Google Scholar 

  38. Sundarajoo A, Maniyam MN, Azman HH et al (2022) Int J Environ Sci Technol 19:3305–3322

    Article  CAS  Google Scholar 

  39. Al-Ansari MM, Li Z, Masood A et al (2022) Environ Res 205:112189–112198

    Article  CAS  PubMed  Google Scholar 

  40. Franciscon E, Zille A, Dias GF et al (2009) Int Biodeterior Biodegrad 63:280–288

    Article  Google Scholar 

  41. Al-Thabaiti SA, Shafik Aazam E, Khan Z et al (2016) Spectrochim Acta A Mol Biomol Spectrosc 156:28–35

    Article  CAS  PubMed  Google Scholar 

  42. Saratale RG, Saratale GD, Chang JS et al (2009) J Hazard Mater 166:1421–1428

    Article  CAS  PubMed  Google Scholar 

  43. Bhoi YP, Pradhan SR, Behera C et al (2016) RSC Adv 6:35589–35601

    Article  CAS  Google Scholar 

  44. Roy DC, Biswas SK, Sheam MM et al (2020) CRMICR 1:37–43

    PubMed  PubMed Central  Google Scholar 

  45. Franciscon E, Zille A, Dias GF et al (2009) Int Biodeter Biodegrad 63:280–288

    Article  Google Scholar 

  46. Yamaki J, Takatsuji H, Kawamura T et al (2002) Solid State ion 148:241–245

    Article  CAS  Google Scholar 

  47. Bartosova A, Blinova L, Sirotiak M et al (2017). Res Papers Faculty Mater Sci Technol Slovak Univ Technol. https://doi.org/10.1515/rput-2017-0012

    Article  Google Scholar 

  48. Acemioglu B (2004) J Colloid Interf Sci 274:371–379

    Article  CAS  Google Scholar 

  49. Gavril M, Hodson PV (2007) World J Microb Biot 23:103–124

    Article  CAS  Google Scholar 

  50. Wesenberg D, Spiros IK, Agathos N (2003) Biotech Adv 22:161–187

    Article  CAS  Google Scholar 

  51. Vignesh A, Manigundan K, Santhoshkumar J et al (2020) Bioprocess Biosyst Eng 43:1457–1468

    Article  CAS  PubMed  Google Scholar 

  52. Singh PK, Singh RL (2017) Int J Appl Sci Biotechnol 5:108–126

    Article  CAS  Google Scholar 

  53. Brzozowska J, Hanower P (1976) Ann l’Univ d’Abidjan Sér C Sci Tome XII 1976:65–87

  54. Ben Younes S, Karray F, Sayadi S (2011) Int Biodeter Biodegr 65:1104–1109

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Ben Younes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellafi, A., Dali, A., Mnif, S. et al. Microbial Enzymatic Degradation, Spectral Analysis and Phytotoxicity Assessment of Congo Red Removal By Bacillus spp.. Catal Lett 153, 3620–3633 (2023). https://doi.org/10.1007/s10562-023-04272-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04272-8

Keywords

Navigation