Skip to main content
Log in

Microbial degradation, spectral analysis and toxicological assessment of malachite green by Streptomyces chrestomyceticus S20

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Malachite green (MG), a triphenylmethane dye is extensively used for coloring silk, aquaculture and textile industries, it has also has been reported toxic to life forms. This study aimed to investigate the biodegradation potential of MG by actinobacteria. The potent actinobacterial strain S20 used in this study was isolated from forest soil (Sabarimala, Kerala, India) and identified as Streptomyces chrestomyceticus based on phenotype and molecular features. Strain S20 degraded MG up to 59.65 ± 0.68% was studied in MSM medium and MG (300 mg l−1) and degradation was increased (90–99%) by additions of 1% glucose and yeast extract into the medium at pH 7. The treated metabolites from MG by S20 characterized by FT-IR and GC–MS. The results showed MG has been degraded into nontoxic compounds evaluated by (1) phytotoxic assay on Vigna radiata, (2) microbial toxicity on Staphylococcus aureus, Bacillus subtilis, Micrococcus luteus, Streptococcus sp. and Escherichia coli, (3) cytotoxicity assay in a human cell line (MCF 7). The toxicity studies demonstrated that the byproducts from MG degradation by S. chrestomyceticus S20 were no toxic to plants and microbes and less toxic to human cells as compared to the parent MG. Perhaps this is the first work reported on biodegradation of MG by S. chrestomyceticus which could be a potential candidate for the removal of MG from various environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

MG:

Malachite green

ISP2:

International Streptomyces Project

MSM:

Minerals salts medium

HCL:

Hydro chloric acid

NaOH:

Sodium hydroxide

FTIR:

Fourier transform infrared spectroscopy

GCMS:

Gas chromatography–mass spectrometry

MEM:

Minimal essential media

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

DMSO:

Dimethyl sulfoxide

References

  1. Ozdemir O, Turan M, Turan AZ, Faki A, Engin AB (2009) Feasibility analysis of color removal from textile dyeing wastewater in a fixed-bed column system by surfactant-modified zeolite (SMZ). J Hazard Mater 166:647–654. https://doi.org/10.1016/j.jhazmat.2008.11.123

    Article  CAS  PubMed  Google Scholar 

  2. Bhatia D, Sharma NR, Singh J, Kanwar RS (2017) Biological methods for textile dye removal from wastewater: a review. Crit Rev Environ Sci Technol 47:1836–1876. https://doi.org/10.1080/10643389.2017.1393263

    Article  CAS  Google Scholar 

  3. Lee JB, Kim M (2012) Photo-degradation of malachite green in mudfish tissues investigation of UV-induced photo-degradation. Food Sci Biotechnol 21:519–524. https://doi.org/10.1007/s10068-012-00665

    Article  Google Scholar 

  4. Holkar CR, Jadhav AJ, Pinjari DV, Mahamuni NM, Pandit AB (2016) A critical review on textile wastewater treatments: possible approaches. J Environ Manag 182:351–366. https://doi.org/10.1016/j.jenvman.2016.07.090

    Article  CAS  Google Scholar 

  5. Vikranta K, Giria BS, Razab N, Roya K, Kimd KH, Raia BN, Singh R (2018) Recent advancements in bioremediation of dye: current status and challenges. Bioresour Technol 253:355–367. https://doi.org/10.1016/j.biortech.2018.01.029

    Article  CAS  Google Scholar 

  6. Rai HS, Singh S, Cheema PPS, Bansal TK, Banerjee UC (2007) Decolorization of triphenylmethane dye-bath effluent in an integrated two-stage anaerobic reactor. J Environ Manag 83:290–297. https://doi.org/10.1016/j.jenvman.2006.03.003

    Article  CAS  Google Scholar 

  7. Zhang J, Li Y, Zhang C, Jing Y (2008) Adsorption of malachite green from aqueous solution onto carbon prepared from Arundo donax root. J Hazard Mater 150:774–782. https://doi.org/10.1016/j.jhazmat.2007.05.036

    Article  CAS  PubMed  Google Scholar 

  8. Zhou X, Zhang J, Zhongli P, Li D (2018) Review of methods for the detection and determination of malachite green and leuco-malachite green in aquaculture. Crit Rev Anal Chem 2:1–20. https://doi.org/10.1080/10408347.2018.1456314

    Article  CAS  Google Scholar 

  9. Gautam M, Azmi W (2017) Purification of extracellular collagenase from Pseudomonas sp. remarkable collagenolytic activity. Adv Biotechnol Microbiol 4:1–8. https://doi.org/10.19080/AIBM.2017.04.555633

    Article  Google Scholar 

  10. Rijuta S, Ganesh S, Shu C, Sanjay G (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138–157. https://doi.org/10.1016/j.jtice.2010.06.006

    Article  CAS  Google Scholar 

  11. Abdelmohsen UR, Bayer K, Hentschel U (2014) Diversity, abundance and natural products of marine sponge-associated actinomycetes. Nat Prod Rep 31:381–399. https://doi.org/10.1039/c3np70111e

    Article  CAS  PubMed  Google Scholar 

  12. Rajasekar A, Ting P (2010) Microbial corrosion of aluminum 2024 aeronautical alloy by hydrocarbon degrading bacteria Bacillus cereus ACE4 and Serratia marcescens ACE2. Ind Eng Chem Res 49:6054–6061. https://doi.org/10.1021/ie100078u

    Article  CAS  Google Scholar 

  13. Parthipan P, Elumalai P, Sathishkumar K, Sabarinathan D, Murugan K, Benelli G, Rajasekar A (2017) Biosurfactant and enzyme mediated crude oil degradation by Pseudomonasstutzeri NA3 and Acinetobacterbaumannii MN3.3. Biotechnology 7:278. https://doi.org/10.1007/s13205-017-0902-7

    Article  Google Scholar 

  14. Parthipan P, Preetham E, Machuca L, Rahman P, Murugan K, Rajasekar A (2017) Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1. Front Microbiol 8:193. https://doi.org/10.3389/fmicb.2017.00193

    Article  PubMed  PubMed Central  Google Scholar 

  15. Polti M, Aparicio JD, Benimeli CS, Amoroso MJ (2014) Simultaneous bioremediation of Cr (VI) and lindane in soil by actinobacteria. Int Biodeterior Biodegrad 88:48–55. https://doi.org/10.1016/j.ibiod.2013.12.004

    Article  CAS  Google Scholar 

  16. Shivlata L, Tulasi S (2015) Thermophilic and alkaliphilic Actinobacteria: biology and potential applications. Front Microbiol 6:1–29. https://doi.org/10.3389/fmicb.2015.01014

    Article  Google Scholar 

  17. Shirling EB, Gottileb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340. https://doi.org/10.1099/00207713-16-3-313

    Article  Google Scholar 

  18. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Article  PubMed  Google Scholar 

  19. Deepak KS, Harvinder SS, Manjinder S, Swapandeep SC, Bhupinder SC (2004) Isolation and characterization of microorganisms capable of decolorizing various triphenylmethane dyes. J Basic Microbiol 44:59–65. https://doi.org/10.1002/jobm.200310334

    Article  CAS  Google Scholar 

  20. Kalyani DC, Telke AA, Dhanve RS, Jadhav JP (2009) Eco-friendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. J Hazard Mater 163:735–742. https://doi.org/10.1016/j.jhazmat.2008.07.020

    Article  CAS  PubMed  Google Scholar 

  21. Taha M, Adetutu EM, Shahsavari E, Smith AT, Ball AS (2014) Azo and anthraquinone dye mixture decolourization at elevated temperature and concentration by a newly isolated thermophilic fungus, Thermomucor indicaeseudaticae. Int J Environ Sci Technol 2:415–423. https://doi.org/10.1016/j.jece.2014.01.015

    Article  CAS  Google Scholar 

  22. Du LN, Wang S, Li G, Wang B, Jia XM, Zhao YH, Chen YL (2011) Biodegradation of malachite green by Pseudomonas sp. strain DY1 under aerobic condition: characteristics, degradation products, enzyme analysis and phytotoxicity. Ecotoxicology 20:438–446. https://doi.org/10.1007/s10646-011-0595-3

    Article  CAS  PubMed  Google Scholar 

  23. Phugare SS, Kalyani DC, Patil AV, Jadhav JP (2011) Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies. J Hazard Mater 186:713–723. https://doi.org/10.1016/j.jhazmat.2010.11.049

    Article  CAS  PubMed  Google Scholar 

  24. Waghmode TR, Kurade MB, Govindwar SP (2011) Time dependent degradation of mixture of structurally different azo and non azo dyes by using Galactomyces geotrichum MTCC 1360. Int Biodeterior Biodegrad 65:479–486. https://doi.org/10.1016/j.ibiod.2011.01.010

    Article  CAS  Google Scholar 

  25. Watharkar AD, Khandare RV, Waghmare PR, Jagadale AD, Govindwar SP, Jadhav JP (2015) Treatment of textile effluent in a developed phytoreactor with immo- bilized bacterial augmentation and subsequent toxicity studies on Etheostoma olmstedi fish. J Hazard Mater 283:698–704. https://doi.org/10.1016/j.jhazmat.2014.10.019

    Article  CAS  PubMed  Google Scholar 

  26. Kuriakose G, Singh S, Rajvanshi PK, Surin WR, Jayabaskaran C (2014) In vitro cytotoxicity and apoptosis induction in human cancer cells by culture extract of an endophytic Fusarium solani strain isolated from Datura metel L. Pharma Anal Acta 5:1–8. https://doi.org/10.4172/2153-2435.1000293

    Article  Google Scholar 

  27. Flickinger MC, Greenstein M, Bremmon C, Conlin J (1990) Strain selection, medium development and scale-up of toyocamycin production by Streptomyces chrestomyceticus. Bioprocess Eng 5:143–153. https://doi.org/10.1007/BF00369578

    Article  CAS  Google Scholar 

  28. Vartika S, Ashok KD (2016) Anti-biofilm activity of the metabolites of Streptomyces chrestomyceticus strain ADP4 against Candida albicans. J Biosci Bioeng 122:1–7. https://doi.org/10.1016/j.jbiosc.2016.03.013

    Article  CAS  Google Scholar 

  29. Bunyapaiboonsri T, Lapanun S, Supothina S, Rachtawee P, Chunhametha S, Suriyachadkun C, Boonruangprapa T, Auncharoen P, Chutrakul C, Vichai V (2016) Polycyclic tetrahydroxanthones from Streptomyces chrestomyceticus BCC 24770. Tetrahedron 72:775–778. https://doi.org/10.1016/j.tetlet.2017.07.008

    Article  CAS  Google Scholar 

  30. Kato S, Shindo K, Kawai H, Odagawa A, Matsuoka M, Mochizuki J (1993) Pyrrolostatin, a novel lipid peroxidation inhibitor from Streptomyces chrestomyceticus taxonomy, fermentation, isolation, structure elucidation and biological properties. J Antibiot 46:892. https://doi.org/10.7164/antibiotics.46.892

    Article  CAS  PubMed  Google Scholar 

  31. Parshetti G, Kalme S, Saratale G, Govindwar S (2006) Biodegradation of malachite green by Kocuria rosea MTCC 1532. Acta Chim Slov 53:492–498

    CAS  Google Scholar 

  32. Santhi R, Sundari MS (2015) Optimization of malachite green decolourization by Pseudomonas aeruginosa MTCC 424. J Pharm Innov 3:11–15

    Google Scholar 

  33. Vaidya K, Pooja U (2008) Decolorization of malachite green by Sporotrichum pulverulentumvarsha. J Ind Pollut Control 24:133–137

    CAS  Google Scholar 

  34. Guo JB, Zhou JT, Wang D, Tian CP, Wang P, Uddin MS (2008) Biocatalyst effects of immobilized anthraquinone on the anaerobic reduction of azo dyes by the salt-tolerant bacteria. Water Res 41:426–432

    Article  Google Scholar 

  35. Pradnya A, Joshi K, Mhatre J (2015) Microbial efficiency to degrade Carbol fuchsin and Malachite green dyes. Adv Appl Sci Res 6:85–88

    Google Scholar 

  36. Alshehrei F (2018) Optimization of malachite green and crystal violet decolorization by Bacillus cereus and Pseudomonas earoginosa. Ann Biol Res 9:1–8

    Google Scholar 

  37. Ying G, Cheng JH, Chen XY (2013) Biological decolorization of malachite green by Deinococcus radiodurans R1. Bioresour Technol 144:275–280. https://doi.org/10.1016/j.biortech.2013.07.003

    Article  CAS  Google Scholar 

  38. Saratale RG, Saratale GD, Chang JS, Govindwar SP (2011) Bacterial decolorization and degradation of azo dyes: a review. J Taiwan Inst Chem Eng 42:138–157. https://doi.org/10.1016/j.jtice.2010.06.006

    Article  CAS  Google Scholar 

  39. Chaturvedi V, Bhange K, Bhatt R, Verma P (2013) Biodetoxification of high amounts of malachite green by a multifunctional strain of Pseudomonas mendocina and its ability of metabolize dye adsorbed chicken feathers. J Environ Chem Eng 1:1205–1213. https://doi.org/10.1016/j.jece.2013.09.009

    Article  CAS  Google Scholar 

  40. Ayed L, Chaieb K, Cheref A (2009) Biodegradation of triphenyl methane dye malachite green by Spingomonas paucimobilis. World J Microbial Biotechnol 25:705–711. https://doi.org/10.1007/s11274-008-9941-x

    Article  CAS  Google Scholar 

  41. Sinha WA, Jabez O (2016) Biodegradation of reactive green dye (RGD) by indigenous fungal strain VITAF-1. Int Biodeterior Biodegrad 114:176–183. https://doi.org/10.1016/j.ibiod.2016.06.016

    Article  CAS  Google Scholar 

  42. Zhu N, Gu L, Yuan H, Lou Z, Wang L, Zhang X (2012) Degradation pathway of the naphthalene azo dye intermediate 1-diazo-2-naphthol-4-sulfonic acid using Fenton’s reagent. Water Res 46:3859–3867. https://doi.org/10.1016/j.watres.2012.04.038

    Article  CAS  PubMed  Google Scholar 

  43. Kapanen A, Itavaara M (2001) Ecotoxicity tests for compost applications. Ecotoxicol Environ Saf 49:1–16. https://doi.org/10.1006/eesa.2000.1927

    Article  CAS  PubMed  Google Scholar 

  44. Surojit B, Sharma VP, Dutta S, Dutta D (2016) Biological decolorization and detoxification of malachite green from aqueous solution by Dietzia maris NIT-D. J Taiwan Inst Chem Eng 67:1–14. https://doi.org/10.1016/j.jtice.2016.07.028

    Article  CAS  Google Scholar 

  45. Sneha U, Poornima R, Sridhar S (2014) Optimization and decolorization of malachite green using Pseudomonasputida. J Chem Pharm Res 6:50–57

    Google Scholar 

  46. Bhavsar S, Dudhagara P, Tank S (2018) R software package based statistical optimization of process components to simultaneously enhance the bacterial growth, laccase production and textile dye decolorization with cytotoxicity study. PLoS ONE 13:0195795. https://doi.org/10.1371/journal.pone.0195795

    Article  CAS  Google Scholar 

  47. Wang J, Gao F, Liu Z, Qiao M, Niu X, Zhang KQ, Huang X (2012) Pathway and molecular mechanisms for malachite green biodegradation in Exiguobacterium sp. MG2. PLoS ONE 7:51808. https://doi.org/10.1371/journal.pone.0051808

    Article  CAS  Google Scholar 

  48. Barapatre A, Aadil K, Jha H (2017) Biodegradation of malachite green by the ligninolytic fungus Aspergillus flavus. Clean Soil Air 45:4. https://doi.org/10.1002/clen.201600045

    Article  CAS  Google Scholar 

  49. Chaturvedi V, Verma P (2015) Biodegradation of malachite green by a novel copper-tolerant Ochrobactrum pseudogrignonense strain GGUPV1 isolated from copper mine waste water. Bioresour Bioprocess 2:42. https://doi.org/10.1186/s40643-015-0070-8

    Article  Google Scholar 

  50. Ali H, Ahmad W, Haq T (2009) Decolorization and degradation of malachite green by Aspergillus flavus and Alternaria solani. Afr J Biotechnol 8:1574–1576

    CAS  Google Scholar 

  51. Arunprasath T, Sudalai S, Meenatchi K, Jeyavishnu K, Arumugam A (2019) Biodegradation of triphenylmethane dye malachite green by a newly isolated fungus strain. Biocatal Agric Biotechnol 17:672–679. https://doi.org/10.1016/j.bcab.2019.01.030

    Article  Google Scholar 

  52. Pandeya R, Tewarib S, Tewaria L (2018) Lignolytic mushroom Lenzites elegans WDP2: Laccase production, characterization, and bioremediation of synthetic dyes. Ecotoxicol Environ Saf 158:50–58. https://doi.org/10.1016/j.ecoenv.2018.04.003

    Article  CAS  Google Scholar 

  53. Kumar S, Arunagirinathan N, Vijayanand S, Hemapriya J, Indra V (2017) Ecofriendly bioremediation of malachite green, a triphenylmethane dye by textile effluent acclimatized bacterial strain—Chromohalobacter sp. strain IAK-7. Int J Curr Res Acad Rev 5:93–99

    Article  CAS  Google Scholar 

  54. Bergsten-Torralba LR, Nishikawa MM, Baptista DF, Magalhaes DP, Silva M (2009) Decolorization of different textile dyes by Penicillium simplicissimum and toxicity evaluation after fungal treatment. Braz J Microbiol 40:808–817. https://doi.org/10.1590/S1517-838220090004000011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bera S, Sharma V, Duttac S, Dutta D (2016) Biological decolorization and detoxification of malachite green from aqueous solution by Dietzia maris NIT-D. J Taiwan Inst Chem Eng 67:1–14. https://doi.org/10.1016/j.jtice.2016.07.028

  56. Chen SH, Tingn A (2015) Biodecolorization and biodegradation potential of recalcitrant triphenylmethane dyes by Coriolopsis sp. isolated from compost. J Environ Manage 150:274–280. https://doi.org/10.1016/j.jenvman.2014.09.014

    Article  CAS  PubMed  Google Scholar 

  57. Olukanni O, Adenopo A, Awotula A, Osuntoki A (2013) Biodegradation of malachite green by extracellular laccase producing Bacillus thuringiensis RUN1. J Basic Appl Sci 9:543–549. https://doi.org/10.6000/1927-5129.2013.09.70

    Article  CAS  Google Scholar 

  58. Jayasinghe C, Imtiaj A, Lee G, Im K, Hur H, Lee M, Yang HS, Lee T (2008) Degradation of three aromatic dyes by white rot fungi and the production of ligninolytic enzymes. Mycobiology 36:114–120. https://doi.org/10.4489/MYCO.2008.36.2.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Youssef AS, Sherif MF, Assar S (2008) Studies on the decolorization of malachite green by the local isolate Acremonium kiliense. Biotechnology 7:213–223. https://doi.org/10.3923/biotech.2008.213.223

    Article  CAS  Google Scholar 

  60. Khataee AR, Zarei M, Pourhassan M (2010) Bioremediation of malachite green from contaminated water by three microalgae: neural network modeling. Clean 38:96–103. https://doi.org/10.1002/clen.200900233

    Article  CAS  Google Scholar 

  61. Ramezani S, Pourbabaee AA, Daneshmand H (2013) Biodegradation of malachite green by Klebsiella Terrigenaptcc 1650: the critical parameters were optimized using Taguchi optimization method. J Bioremed Biodegrad 4:175. https://doi.org/10.4172/2155-6199.1000175

    Article  CAS  Google Scholar 

  62. Cheriaa J, Khaireddine M, Rouabhia M, Bakhrouf A (2012) Removal of triphenylmethane dyes by bacterial consortium. Sci World J. https://doi.org/10.1100/2012/512454

    Article  Google Scholar 

  63. Ayed L, Chaieb K, Cheref A, Bakhrouf A (2010) Biodegradation and decolorization of triphenylmethane dyes by Staphylococcus epidermidis. Desalination 260:137–146. https://doi.org/10.1016/j.desal.2010.04.052

    Article  CAS  Google Scholar 

  64. Jasinska A, Rozalska S, Bernat P, Paraszkiewiczm K, Dlugonski J (2012) Malachite green decolorization by non-basidiomycete filamentous fungi of Penicillium pinophilum and Myrothecium roridum. Int Biodeterior Biodegrad 73:33–40. https://doi.org/10.1016/j.ibiod.2012.06.025

    Article  CAS  Google Scholar 

  65. Jadhav JP, Govindwar SP (2006) Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast 23:315–323. https://doi.org/10.1002/yea.1356

    Article  CAS  PubMed  Google Scholar 

  66. Sabarathinam S, Priyadharshini U, Krishnaswamy S, Subramaniam S, Wu Y (2017) Enhanced biodegradation and detoxification of malachite green by Trichoderma asperellum laccase: degradation pathway and product analysis. Int Biodeterior Biodegrad 1:11. https://doi.org/10.1016/j.ibiod.2017.08.001

    Article  CAS  Google Scholar 

  67. Chen CH, Chang CF, Liu SM (2010) Partial degradation mechanisms of malachite green and methyl violet B by Shewanella decolorationis NTOU1 under anaerobic conditions. J Hazard Mater 177:281–289. https://doi.org/10.1016/j.jhazmat.2009.12.030

    Article  CAS  PubMed  Google Scholar 

  68. Shedbalkar U, Jadhav JP (2011) Detoxification of malachite green and textile industrial effluent by Penicillium ochrochloron. Biotechnol Bioprocess Eng 16:196–204. https://doi.org/10.1007/s12257-010-0069-0

    Article  CAS  Google Scholar 

  69. Daneshvar N, Ayazloo M, Khataee AR, Pourhassan M (2007) Biological decolourization of dye solution containing malachite green by microalgae Cosmarium sp. Bioressour Technol 98:1176–1182. https://doi.org/10.1016/j.biortech.2006.05.025

    Article  CAS  Google Scholar 

  70. Kalyani DC, Telke AA, Surwase SN, Jadhav SB, Lee JK, Jadhav JP (2012) Effectual decolourization and detoxification of triphenylmethane dye malachite green (MG) by Pseudomonas aeruginosa NCIM 2074 and its enzyme system. Clean Technol Environ Policy 14:989–1001. https://doi.org/10.1007/s10098-012-0473-6

    Article  CAS  Google Scholar 

  71. Wu Q, Guolin H, Jing Z (2018) Degradation of malachite green dye by Tenacibaculum sp HMG1 isolated from Pacific deep-sea sediments. Acta Oceanol Sin 37:104–111. https://doi.org/10.1007/s13131-018-1187-3

    Article  CAS  Google Scholar 

  72. Mnif I, Fendri R, Ghribi D (2015) Malachite green bio removal by a newly isolated strain Citrobacter sedlakii RI11; Enhancement of the treatment by biosurfactant addition. Water Sci Technol 72:1283–1293. https://doi.org/10.2166/wst.2015.302

    Article  CAS  PubMed  Google Scholar 

  73. Subramanian T, Ramesh T, Kalaiselvam M (2015) Degradation of triphenylmethane dye: malachite green by Aspergillus flavus. World J Pharm Pharm Sci 3:44–50

    Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the support of the management of Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India for providing the research facilities. We are also thankful to the FIST Facility, Department of Physics, Sathyabama Institute of Science and Technology” via Ref. No SR/FIST/PSI/193/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manikkam Radhakrishnan.

Ethics declarations

Conflict of interest

The authors declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2631 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignesh, A., Manigundan, K., Santhoshkumar, J. et al. Microbial degradation, spectral analysis and toxicological assessment of malachite green by Streptomyces chrestomyceticus S20. Bioprocess Biosyst Eng 43, 1457–1468 (2020). https://doi.org/10.1007/s00449-020-02339-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02339-z

Keywords

Navigation