Skip to main content
Log in

A Spherical Superstructure of Co,N-doping Mesoporous Carbon for Oxygen Reduction Reaction in Air-Breath Cathode Microbial Fuel Cell

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Mesoporous carbon materials with nano/microsize have attracted lots of researchers' attention for broad application. The purpose of this study is to develop Co/N co-doped spherical carbon catalyst for ORR. Herein, a twice-assembly strategy is put forward for the synthesis spherical superstructure of Co-based metal organic frameworks (Co-MOF-74) comprising micro- or mesopores from the decomposition and reconstitution of Co-MOF-74 with the addition of structure-directing agent. The Co, N-doped mesoporous spherical superstructure carbon materials (SS-Co/N-MC-T) are prepared by the self-template thermal transformation. The results showed that X-ray absorption near edge structure spectra prove that the Co K-edge of all SS-Co/N-MC-T catalysts show a primary peak corresponding to Co-N4 sites scattering path at ~ 1.4 Å. Results show that SS-Co/N-MC-800 processes preeminent Oxygen Reduction Reaction (ORR) performance with an onset potential of 0.177 V vs Ag/AgCl and whose electrocatalytic activity is comparable to that of the 20% Pt/C catalyst (0.205 V vs Ag/AgCl). Moreover, to investigate the practical ORR electrocatalytic performance of the SS-Co/N-MC-T catalysts, practical air-breath cathode tests are conducted with microbial fuel cells (MFCs) containing SS-Co/N-MC-T and Pt/C. The MFCs of SS-Co/N-MC-800 delivers an optimal power density of 0.95 ± 0.4 mW/m2, which is close to that of Pt/C-MFCs systems (1.00 ± 0.3 W/m2).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wu XJ, Chen J, Tan C, Zhu Y, Han Y, Zhang H (2016) Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates. Nat Chem 8:470–475

    Article  CAS  PubMed  Google Scholar 

  2. Shen K, Zhang L, Chen X, Liu L, Zhang D, Han Y, Chen J, Long J, Luque R, Li Y, Chen B (2018) Ordered macro-microporous metal-organic framework single crystals. Science 359:206–210

    Article  CAS  PubMed  Google Scholar 

  3. Song P, Qin H, Gao HL, Cong HP, Yu SH (2018) Self-healing and superstretchable conductors from hierarchical nanowire assemblies. Nat Commun 9:2786

    Article  PubMed  PubMed Central  Google Scholar 

  4. Furukawa S, Reboul J, Diring S, Sumida K, Kitagawa S (2014) Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale. Chem Soc Rev 43:5700–5734

    Article  CAS  PubMed  Google Scholar 

  5. Guan C, Sumboja A, Wu H, Ren W, Wang J (2017) Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv Mater 29:1704117

    Article  Google Scholar 

  6. Lianli Z, Mitsunori K, Jinhua H, Kazutomo S, Nobuko T, Zheng L (2019) Fabrication of a spherical superstructure of carbon nanorods. Adv Mater 31:1900440

    Google Scholar 

  7. Chen HR, Shen K, Tan YP, Li YW (2019) Multishell hollow metal/nitrogen/carbon dodecahedrons with precisely controlled architectures and synergistically enhanced catalytic properties. ACS Nano 13:7800–7810

    Article  CAS  PubMed  Google Scholar 

  8. Chen XX, Tang QW, He BL, Lin L, Yu LM (2014) Platinum-free binary Co-Ni alloy counter electrodes for efficient dye-sensitized solar cells. Angew Chem Int Edit 53:10799–10803

    Article  CAS  Google Scholar 

  9. Mo M, Yu JC, Zhang L, Li SKA (2005) Holographic point-of-care diagnostic devices. Adv Mater 17:756–760

    Article  CAS  Google Scholar 

  10. Chen S, Duan J, Jaroniec M, Qiao SZ (2013) Three-dimensional n-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. Angew Chem Int Ed 52:13567–13570

    Article  CAS  Google Scholar 

  11. Gu Z, Paranthaman MP, Xu J, Pan ZW (2009) Aligned ZnO nanorod arrays grown directly on zinc foils and zinc spheres by a low-temperature oxidization method. ACS Nano 3:273–278

    Article  CAS  PubMed  Google Scholar 

  12. Wang C, Chen J, Zhou X, Li W, Liu Y, Yue Q, Xue Z, Li Y, Elzatahry AA, Deng Y, Zhao D (2014) Magnetic yolk-shell structured anatase-based microspheres loaded with Au nanoparticles for heterogeneous catalysis. Nano Res 8:238–245

    Article  Google Scholar 

  13. Arbulu RC, Jiang YB, Peterson EJ, Qin Y (2018) Metal-organic framework (MOF) nanorods, nanotubes, and nanowires. Angew Chem Int Ed 57:5813–5817

    Article  CAS  Google Scholar 

  14. Chen T, Huang Y, Li C, Kung C, Vittal R, Ho KC (2016) Metal-organic framework/sulfonated polythiophene on carbon cloth as a flexible counter electrode for dye-sensitized solar cells. Nano Energy 32:19–27

    Article  CAS  Google Scholar 

  15. Dang S, Zhu QL, Xu Q (2017) Nanomaterials derived from metal-organic frameworks. Nat Rev Mater 3:17075

    Article  Google Scholar 

  16. Ni B, Ouyang C, Xu XB, Zhuang J, Wang X (2017) Modifying commercial carbon with trace amounts of ZIF to prepare derivatives with superior ORR activities. Adv Mater 29:1701354

    Article  Google Scholar 

  17. Chen YZ, Wang CM, Wu ZY, Xiong YJ, Xu Q, Yu SH, Jiang HL (2015) Metal-organic frameworks: from bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis. Adv Mater 27:5010–5016

    Article  CAS  PubMed  Google Scholar 

  18. Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang X, He M, Liu JH, Liao R, Zhao L, Xie J, Wang R, Yang ST, Wang H, Liu Y (2014) Fe3O4@C nanoparticles as high-performance Fenton-like catalyst for dye decoloration. Chinese Sci Bull 59:3406–3412

    Article  CAS  Google Scholar 

  20. Amiinu IS, Liu XB, Pu ZH, Li WQ, Li QD, Zhang J, Tang HL, Zhang HN, Mu SC (2017) Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-air batteries. Adv Funct Mater 27:1702300

    Article  Google Scholar 

  21. Zhang LH, Hu YY, Chen JF, Huang WT, Cheng JH, Chen YC (2018) A novel metal organic framework-derived carbon-based catalyst for oxygen reduction reaction in a microbial fuel cell. J Power Sources 38:4449–4456

    Google Scholar 

  22. Zou L, Qiao Y, Wu ZY, Wu XS, Xie JL, Yu SH, Guo JH, Li CM (2016) Tailoring unique mesopores of hierarchically porous structures for fast direct electrochemistry in microbial fuel cells. Adv Energy Mater 6:1501535

    Article  Google Scholar 

  23. Jiang Z, Shi Y, Jiang ZJ, Tian X, Luo L, Chen W (2014) High performance of a free-standing sulfonic acid functionalized holey graphene oxide paper as a proton conducting polymer electrolyte for air-breathing direct methanol fuel cells. J Mater Chem A 2:6494–6503

    Article  CAS  Google Scholar 

  24. Khandelwal M, Chandrasekaran S, Hur SH, Chung JS (2018) Chemically controlled in-situ growth of cobalt oxide microspheres on N, S-co-doped reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction. J Power Sources 407:70–83

    Article  CAS  Google Scholar 

  25. Cheng Q, Yang L, Zou L, Zou Z, Chen C, Hu Z, Yang H (2017) Single cobalt atom and N codoped carbon nanofibers as highly durable electrocatalyst for oxygen reduction reaction. ACS Catal 7:6864–6871

    Article  CAS  Google Scholar 

  26. Wang XX, Prabhakaran V, He Y, Shao Y, Wu G (2019) Iron-free cathode catalysts for proton-exchange-membrane fuel cells: cobalt catalysts and the peroxide mitigation approach. Adv Mater 31:1805126

    Article  Google Scholar 

  27. Wu G, More KL, Johnston CM, Zelenay P (2011) High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332:443–447

    Article  CAS  PubMed  Google Scholar 

  28. Ji LL, Wang JY, Teng X, Meyer TJ, Chen ZF (2019) CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting. ACS Catal 10:412–419

    Article  Google Scholar 

  29. Han HJ, Bai ZY, Wang XB, Chao SJ, Liu J, Kong QQ, Yang XL, Yang L (2018) Highly dispersed co nanoparticles inlayed in S, N-doped hierarchical carbon nanoprisms derived from Co-MOFs as efficient electrocatalysts for oxygen reduction reaction. Catal Today 318:126–131

    Article  CAS  Google Scholar 

  30. Kang BK, Lm SY, Lee JY, Kwag SH, Kwon SB, Tiruneh S, Kim MJ, Kim JH, Yang WS, Lim B, Yoon DH (2019) In-situ formation of MOF derived mesoporous Co3N/amorphous N-doped carbon nanocubes as an efficient electrocatalytic oxygen evolution reaction. Nano Res 12:1605–1611

    Article  CAS  Google Scholar 

  31. Han HJ, Chao SJ, Bai ZY, Wang XB, Yang XL, Qiao JL, Chen ZW, Lin Y (2018) MOF-derived co nanoparticles deposited on n-doped bimodal mesoporous carbon nanorods as efficient bifunctional catalysts for rechargeable zinc-air batteries. ChemElectroChem 5:1868–1873

    Article  CAS  Google Scholar 

  32. Zhang MD, Dai QB, Zheng HG, Chen MD, Dai LM (2018) Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient zn–air batteries and water splitting. Adv Mater 30:1705431

    Article  Google Scholar 

  33. Huang LF, Ni MY, Zhang GR, Zhou WH, Li YG, Zheng XH, Zeng Z (2011) Modulation of the thermodynamic, kinetic and magnetic properties of the hydrogen monomer on graphene by charge doping. J Chem Phys 135:064705-064705–064709

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National outstanding Youth Science Fund Project of National Natural Science Foundation of China (NO. JC2018002), National Natural Science Foundation of China (22008134), National Natural Science Foundation of China (21905042) and Natural Science Foundation of Heilongjiang Province (NO. JJ2019LH0816).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 9619 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Wang, X., Wang, Y. et al. A Spherical Superstructure of Co,N-doping Mesoporous Carbon for Oxygen Reduction Reaction in Air-Breath Cathode Microbial Fuel Cell. Catal Lett 153, 659–672 (2023). https://doi.org/10.1007/s10562-022-04006-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-022-04006-2

Keywords

Navigation