Skip to main content
Log in

Spatial confinement of zeolitic imidazolate framework deposits by porous carbon nanospheres for dual-atom catalyst towards high-performance oxygen reduction reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Dual atom catalysts (DACs), are promising electrocatalysts for oxygen reduction reaction (ORR) on account of the potential dual-atom active sites for the optimized adsorption of catalytic intermediates and the lower reaction energy barriers. Herein, spatial confinement strategy to fabricate DACs with well-defined Fe, Co dual-atom active site is proposed by implanting zeolitic imidazolate frameworks inside the pores of highly porous carbon nanospheres (Fe/Co-SAs-Nx-PCNSs). The atomically dispersed dual-atom active sites facilitate the adsorption/desorption of intermediates. Furthermore, the spatial confinement effect protects metal atoms aggregating. Benefiting from the rich accessible dual-atom active sites and boosted mass transport, we achieve remarkable ORR performance with half-wave potential up to 0.91 and 0.8 V (vs. reversible hydrogen electrode (RHE)), and long-term stability up to 10 h in both alkaline and acidic electrolytes. The remarkably enhanced ORR catalytic property of our as-developed DACs is in the rank of excellence for 1%. The as-developed rechargeable Zn-air battery (ZAB) with Fe/Co-SAs-Nx-PCNSs air cathode delivers ultrahigh power density of 216 mW·cm−2, outstanding specific capacity of 813 mAh·g−1, and promising cycling operation durability over 160 h. The flexible Zn-air battery also exhibits excellent specific capacity, cycling stability, and flexibility performance. This work opens up a new pathway for the multiscale design of efficient electrocatalysts with atomically dispersed multiple active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zong, L. B.; Fan, K. C.; Wu, W. C.; Cui, L. X.; Zhang, L. L.; Johannessen, B.; Qi, D. C.; Yin, H. J.; Wang, Y.; Liu, P. R. et al. Anchoring single copper atoms to microporous carbon spheres as high-performance electrocatalyst for oxygen reduction reaction. Adv. Funct. Mater. 2021, 31, 2104864.

    CAS  Google Scholar 

  2. Chen, X.; Pu, J.; Hu, X. H.; An, L.; Jiang, J. J.; Li, Y. J. Confinement synthesis of bimetallic MOF-derived defect-rich nanofiber electrocatalysts for rechargeable Zn-air battery. Nano Res. 2022, 15, 9000–9009.

    CAS  Google Scholar 

  3. Haider, R.; Wen, Y. C.; Ma, Z. F.; Wilkinson, D. P.; Zhang, L.; Yuan, X. X.; Song, S. Q.; Zhang, J. J. High temperature proton exchange membrane fuel cells: Progress in advanced materials and key technologies. Chem. Soc. Rev. 2021, 50, 1138–1187.

    CAS  Google Scholar 

  4. Zhang, Y. G.; Deng, Y. P.; Wang, J. Y.; Jiang, Y.; Cui, G. L.; Shui, L. L.; Yu, A. P.; Wang, X.; Chen, Z. W. Recent progress on flexible Zn-air batteries. Energy Storage Mater. 2021, 35, 538–549.

    Google Scholar 

  5. Zong, L. B.; Chen, X.; Liu, S. L.; Fan, K. C.; Dou, S. M.; Xu, J.; Zhao, X. X.; Zhang, W. J.; Zhang, Y. W.; Wu, W. C. et al. Ultrafine Fe/Fe3C decorated on Fe-Nx-C as bifunctional oxygen electrocatalysts for efficient Zn-air batteries. J. Energy Chem. 2021, 56, 72–79.

    CAS  Google Scholar 

  6. Jiao, C. L.; Xu, Z.; Shao, J. Z.; Xia, Y.; Tseng, J.; Ren, G. Y.; Zhang, N. J.; Liu, P. F.; Liu, C. X.; Li, G. S. et al. High-density atomic Fe-N4/C in tubular, biomass-derived, nitrogen-rich porous carbon as air-electrodes for flexible Zn-air batteries. Adv. Funct. Mater., 2023, 33, 2213897–2213903.

    CAS  Google Scholar 

  7. Zhao, Y. S.; Wan, J. W.; Yang, N. L.; Yu, R. B.; Wang, D. sp-Hybridized nitrogen doped graphdiyne for high-performance Zn-air batteries. Mater. Chem. Front. 2021, 5, 7987–7992.

    CAS  Google Scholar 

  8. Zhu, S. Y.; Yang, L. T.; Bai, J. S.; Chu, Y. Y.; Liu, J.; Jin, Z.; Liu, C. P.; Ge, J. J.; Xing, W. Ultra-stable Pt5La intermetallic compound towards highly efficient oxygen reduction reaction. Nano Res. 2023, 16, 2035–2040.

    CAS  Google Scholar 

  9. Dai, Y. W.; Yu, J.; Wang, J.; Shao, Z. P.; Guan, D. Q.; Huang, Y. C.; Ni, M. Bridging the charge accumulation and high reaction order for high-rate oxygen evolution and long stable Zn-air batteries. Adv. Funct. Mater. 2022, 32, 2111989.

    CAS  Google Scholar 

  10. Nallathambi, V.; Lee, J. W.; Kumaraguru, S. P.; Wu, G.; Popov, B. N. Development of high performance carbon composite catalyst for oxygen reduction reaction in PEM proton exchange membrane fuel cells. J. Power Sources 2008, 183, 34–42.

    CAS  Google Scholar 

  11. Zhang, W. J.; Fan, K. C.; Chuang, C. H.; Liu, P. R.; Zhao, J.; Qi, D. C.; Zong, L. B.; Wang, L. Molten salt assisted fabrication of Fe@FeSA-N-C oxygen electrocatalyst for high performance Zn-air battery. J. Energy Chem. 2021, 61, 612–621.

    CAS  Google Scholar 

  12. Wu, Y. Y.; Ye, C. C.; Yu, L.; Liu, Y. F.; Huang, J. F.; Bi, J. B.; Xue, L.; Sun, J. W.; Yang, J.; Zhang, W. Q. et al. Soft template-directed interlayer confinement synthesis of a Fe-Co dual single-atom catalyst for Zn-air batteries. Energy Storage Mater. 2022, 45, 805–813.

    Google Scholar 

  13. Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924–931.

    CAS  Google Scholar 

  14. Liu, B. K.; Xu, L. K.; Zhao, Y. S.; Du, J.; Yang, N. L.; Wang, D. Heteroatoms in graphdiyne for catalytic and energy-related applications. J. Mater. Chem. A 2021, 9, 19298–19316.

    CAS  Google Scholar 

  15. Keith, J. A.; Jerkiewicz, G.; Jacob, T. Theoretical investigations of the oxygen reduction reaction on Pt(111). ChemPhysChem 2010, 11, 2779–2794.

    CAS  Google Scholar 

  16. Chen, S.; Zhao, J. K.; Su, H. Y.; Li, H. L.; Wang, H. L.; Hu, Z. P.; Bao, J.; Zeng, J. Pd-Pt tesseracts for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 496–503.

    CAS  Google Scholar 

  17. Ravichandran, S.; Bhuvanendran, N.; Xu, Q.; Maiyalagan, T.; Xing, L.; Su, H. N. Ordered mesoporous Pt-Ru-Ir nanostructures as superior bifunctional electrocatalyst for oxygen reduction/oxygen evolution reactions. J. Colloid Interface Sci. 2022, 608, 207–218.

    CAS  Google Scholar 

  18. Koenigsmann, C.; Santulli, A. C.; Gong, K. P.; Vukmirovic, M. B.; Zhou, W. P.; Sutter, E.; Wong, S. S.; Adzic, R. R. Enhanced electrocatalytic performance of processed, ultrathin, supported Pd–Pt core–shell nanowire catalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2011, 133, 9783–9795.

    CAS  Google Scholar 

  19. Liu, C.; Shen, Y.; Zhang, J. F.; Li, G.; Zheng, X. R.; Han, X. P.; Xu, L. Y.; Zhu, S. Z.; Chen, Y. N.; Deng, Y. D. et al. Multiple twin boundary-regulated metastable Pd for ethanol oxidation reaction. Adv. Energy Mater. 2022, 12, 2103505.

    CAS  Google Scholar 

  20. Vesborg, P. C. K.; Jaramillo, T. F. Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy. RSC Adv. 2012, 2, 7933–7947.

    CAS  Google Scholar 

  21. Hai, X.; Xi, S. B.; Mitchell, S.; Harrath, K.; Xu, H. M.; Akl, D. F.; Kong, D. B.; Li, J.; Li, Z. J.; Sun, T. et al. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. Nat. Nanotechnol. 2022, 17, 174–181.

    CAS  Google Scholar 

  22. Lu, F. H.; Fan, K. C.; Cui, L. X.; Yang, Y.; Wang, W. X.; Zhang, G. T.; Wang, C. B.; Zhang, Q.; Li, B.; Zong, L. B. et al. Cu-N4 single atoms derived from metal-organic frameworks with trapped nitrogen-rich molecules and their use as efficient electrocatalysts for oxygen reduction reaction. Chem. Eng. J. 2022, 431, 133242.

    CAS  Google Scholar 

  23. Lu, F. H.; Fan, K. C.; Cui, L. X.; Li, B.; Yang, Y.; Zong, L. B.; Wang, L. Engineering FeN4 active sites onto nitrogen-rich carbon with tubular channels for enhanced oxygen reduction reaction performance. Appl. Catal. B:Environ. 2022, 313, 121464.

    CAS  Google Scholar 

  24. Li, R. Z.; Wang, D. S. Superiority of dual-atom catalysts in electrocatalysis: One step further than single-atom catalysts. Adv. Energy Mater. 2022, 12, 2103564.

    CAS  Google Scholar 

  25. Xu, H.; Zhao, Y. T.; Wang, Q.; He, G. Y.; Chen, H. Q. Supports promote single-atom catalysts toward advanced electrocatalysis. Coord. Chem. Rev. 2022, 451, 214261.

    CAS  Google Scholar 

  26. Zhang, H.; Sun, Q. D.; He, Q.; Zhang, Y.; He, X. H.; Gan, T.; Ji, H. B. Single Cu atom dispersed on S, N-codoped nanocarbon derived from shrimp shells for highly-efficient oxygen reduction reaction. Nano Res. 2022, 15, 5995–6000.

    CAS  Google Scholar 

  27. Tian, H.; Song, A. L.; Zhang, P.; Sun, K. A.; Wang, J. J.; Sun, B.; Fan, Q. H.; Shao, G. J.; Chen, C.; Liu, H. et al. High durability of Fe-N-C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media. Adv. Mater. 2023, 35, 2210714.

    CAS  Google Scholar 

  28. Yang, J.; Liu, W. G.; Xu, M. Q.; Liu, X. Y.; Qi, H. F.; Zhang, L. L.; Yang, X. F.; Niu, S. S.; Zhou, D.; Liu, Y. F. et al. Dynamic behavior of single-atom catalysts in electrocatalysis: Identification of Cu-N3 as an active site for the oxygen reduction reaction. J. Am. Chem. Soc. 2021, 143, 14530–14539.

    CAS  Google Scholar 

  29. Shao, C. F.; Wu, L. M.; Wang, Y. H.; Qu, K. G.; Chu, H. L.; Sun, L. X.; Ye, J. S.; Li, B. T.; Wang, X. J. Engineering asymmetric Fe coordination centers with hydroxyl adsorption for efficient and durable oxygen reduction catalysis. Appl. Catal. B:Environ. 2022, 316, 121607.

    CAS  Google Scholar 

  30. Cui, L. X.; Fan, K. C.; Zong, L. B.; Lu, F. H.; Zhou, M.; Li, B.; Zhang, L. C.; Feng, L. Y.; Li, X.; Chen, Y. N. et al. Sol-gel pore-sealing strategy imparts tailored electronic structure to the atomically dispersed Ru sites for efficient oxygen reduction reaction. Energy Storage Mater. 2022, 44, 469–476.

    Google Scholar 

  31. Zhang, J. Q.; Zhao, Y. F.; Chen, C.; Huang, Y. C.; Dong, C. L.; Chen, C. J.; Liu, R. S.; Wang, C. Y.; Yan, K.; Li, Y. D. et al. Tuning the coordination environment in single-atom catalysts to achieve highly efficient oxygen reduction reactions. J. Am. Chem. Soc. 2019, 141, 20118–20126.

    CAS  Google Scholar 

  32. Zhang, J. C.; Yang, H. B.; Liu, B. Coordination engineering of singleatom catalysts for the oxygen reduction reaction: A review. Adv. Energy Mater. 2021, 11, 2002473.

    CAS  Google Scholar 

  33. Xiong, Y.; Li, H. C.; Liu, C. W.; Zheng, L. R.; Liu, C.; Wang, J. O.; Liu, S. J.; Han, Y. H.; Gu, L.; Qian, J. S. et al. Single-atom Fe catalysts for Fenton-like reactions: Roles of different N species. Adv. Mater. 2022, 34, 2110653.

    CAS  Google Scholar 

  34. Gong, Y. N.; Jiao, L.; Qian, Y. Y.; Pan, C. Y.; Zheng, L. R.; Cai, X. C.; Liu, B.; Yu, S. H.; Jiang, H. L. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew. Chem., Int. Ed. 2020, 59, 2705–2709.

    CAS  Google Scholar 

  35. Zhou, L.; Zhou, P.; Zhang, Y. L.; Liu, B. Y.; Gao, P.; Guo, S. J. 3D star-like atypical hybrid MOF derived single-atom catalyst boosts oxygen reduction catalysis. J. Energy Chem. 2021, 55, 355–360.

    CAS  Google Scholar 

  36. Zhang, L.; Meng, Q. L.; Zheng, R. X.; Wang, L. Q.; Xing, W.; Cai, W. W.; Xiao, M. L. Microenvironment regulation of M-N-C singleatom catalysts towards oxygen reduction reaction. Nano Res., 2023, 16, 4468–4487.

    CAS  Google Scholar 

  37. Wang, J.; Zhao, C. X.; Liu, J. N.; Song, Y. W.; Huang, J. Q.; Li, B. Q. Dual-atom catalysts for oxygen electrocatalysis. Nano Energy 2022, 104, 107927.

    CAS  Google Scholar 

  38. Yao, D. Z.; Tang, C.; Zhi, X.; Johannessen, B.; Slattery, A.; Chern, S.; Qiao, S. Z. Inter-metal interaction with a threshold effect in NiCu dual-atom catalysts for CO2 electroreduction. Adv. Mater. 2023, 35, 2209386.

    CAS  Google Scholar 

  39. Sorribas, S.; Zornoza, B.; Téllez, C.; Coronas, J. Ordered mesoporous silica-(ZIF-8) core-shell spheres. Chem. Commun. 2012, 48, 9388–9390.

    CAS  Google Scholar 

  40. Ahn, S. H.; Yu, X. W.; Manthiram, A. “Wiring” Fe-Nx-embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media. Adv. Matter. 2017, 29, 1606534.

    Google Scholar 

  41. Wang, S. D.; He, Q.; Wang, C. D.; Jiang, H. L.; Wu, C. Q.; Chen, S. M.; Zhang, G. B.; Song, L. Active sites engineering toward superior carbon-based oxygen reduction catalysts via confinement pyrolysis. Small 2018, 14, 1800128.

    Google Scholar 

  42. Shao, C. F.; Wu, L. M.; Zhang, H. C.; Jiang, Q. K.; Xu, X. Y.; Wang, Y. H.; Zhuang, S. G.; Chu, H. L.; Sun, L. X.; Ye, J. S. et al. A versatile approach to boost oxygen reduction of Fe-N4 sites by controllably incorporating sulfur functionality. Adv. Funct. Mater. 2021, 31, 2100833.

    CAS  Google Scholar 

  43. Liang, L.; Jin, H. H.; Zhou, H.; Liu, B. S.; Hu, C. X.; Chen, D.; Wang, Z.; Hu, Z. Y.; Zhao, Y. F.; Li, H. W. et al. Cobalt single atom site isolated Pt nanoparticles for efficient ORR and HER in acid media. Nano Energy 2021, 88, 106221.

    CAS  Google Scholar 

  44. Jia, J. T.; Chen, Z. J.; Jiang, H.; Belmabkhout, Y.; Mouchaham, G.; Aggarwal, H.; Adil, K.; Abou-Hamad, E.; Czaban-Jóźwiak, J.; Tchalala, M. R. et al. Extremely hydrophobic POPs to access highly porous storage media and capturing agent for organic vapors. Chem 2019, 5, 180–191.

    CAS  Google Scholar 

  45. Lin, X. N.; Shi, L.; Liu, F.; Jiang, C. C.; Mao, J. J.; Hu, C. G.; Liu, D. Large-scale production of holey carbon nanosheets implanted with atomically dispersed Fe sites for boosting oxygen reduction electrocatalysis. Nano Res. 2022, 15, 1926–1933.

    CAS  Google Scholar 

  46. Charreteur, F.; Jaouen, F.; Ruggeri, S.; Dodelet, J. P. Fe/N/C non-precious catalysts for PEM fuel cells: Influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction. Electrochim. Acta 2008, 53, 2925–2938.

    CAS  Google Scholar 

  47. Lefevre, M.; Proietti, E.; Jaouen, F.; Dodelet, J. P. Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 2009, 324, 71–74.

    CAS  Google Scholar 

  48. Zhu, W. K.; Pei, Y. B.; Douglin, J. C.; Zhang, J. F.; Zhao, H. Y.; Xue, J. D.; Wang, Q. F.; Li, R.; Qin, Y. Z.; Yin, Y. et al. Multi-scale study on bifunctional Co/Fe-N-C cathode catalyst layers with high active site density for the oxygen reduction reaction. Appl. Catal. B:Environ. 2021, 299, 120656.

    CAS  Google Scholar 

  49. Li, H.; Chen, X.; Chen, J. Y.; Shen, K.; Li, Y. W. Hierarchically porous Fe, N-doped carbon nanorods derived from 1D Fe-doped MOFs as highly efficient oxygen reduction electrocatalysts in both alkaline and acidic media. Nanoscale 2021, 13, 10500–10508.

    CAS  Google Scholar 

  50. Yuan, K.; Lützenkirchen-Hecht, D.; Li, L. B.; Shuai, L.; Li, Y. Z.; Cao, R.; Qiu, M.; Zhuang, X. D.; Leung, M. K. H.; Chen, Y. W. et al. Boosting oxygen reduction of single iron active sites via geometric and electronic engineering: Nitrogen and phosphorus dual coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412.

    CAS  Google Scholar 

  51. Liu, M. M.; Wang, L. L.; Zhao, K. N.; Shi, S. S.; Shao, Q. S.; Zhang, L.; Sun, X. L.; Zhao, Y. F.; Zhang, J. J. Atomically dispersed metal catalysts for the oxygen reduction reaction: Synthesis, characterization, reaction mechanisms and electrochemical energy applications. Energy Environ. Sci. 2019, 12, 2890–2923.

    CAS  Google Scholar 

  52. Ren, B. H.; Zhang, Z.; Wen, G. B.; Zhang, X. W.; Xu, M.; Weng, Y. Y.; Nie, Y. H.; Dou, H. Z.; Jiang, Y.; Deng, Y. P. et al. Dual-scale integration design of Sn-ZnO catalyst toward efficient and stable CO2 electroreduction. Adv. Mater. 2022, 34, 2204637.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Nos. 52172208, 52072197, and 21971132) and Natural Science Foundation of Shandong Province (No. ZR2019MB042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingbo Zong or Lei Wang.

Electronic Supplementary Material

12274_2023_5767_MOESM1_ESM.pdf

Spatial confinement of zeolitic imidazolate framework deposits by porous carbon nanospheres for dual-atom catalyst towards high-performance oxygen reduction reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Li, P., Fan, K. et al. Spatial confinement of zeolitic imidazolate framework deposits by porous carbon nanospheres for dual-atom catalyst towards high-performance oxygen reduction reaction. Nano Res. 16, 11464–11472 (2023). https://doi.org/10.1007/s12274-023-5767-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5767-y

Keywords

Navigation