Skip to main content

Advertisement

Log in

Mesopore-dominated N, S co-doped carbon as advanced oxygen reduction reaction electrocatalysts for Zn-air battery

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Oxygen reduction reaction (ORR) is a crucial step for Zn-air batteries (ZABs), which requires low-cost yet efficient catalysts to satisfy the practical application. Heteroatom-doped, especially N, S-doped carbon, has attracted intensive attention as promising ORR catalysts. However, the issues of devitalized micropore channels covered by reaction intermediates and unstable configuration of N, S heteroatoms obtained by post-doping treatment have largely hindered the development of carbon-based catalysts. Herein, mesopore-dominated N, S co-doped hierarchical carbon has been constructed by the hard-soft (SiO2–ZnCl2) template strategy based on waste biomass. The optimal catalyst (NSC-PT-0.1) exhibits a mesopore-dominated hierarchical porous structure with high SBET (2357.55 m2 g−1) and N, S content (~ 2.32 at.%), resulting in comparable ORR activity in acid (E1/2 = 0.69 V) and alkaline (E1/2 = 0.83 V) media to Pt/C. Moreover, different biomass precursors of Carrot, Whorled stonecrop, and Ginkgo leaf have been explored to verify the generality of hard-soft template strategy. When NSC-PT-0.1 is applied as the air electrode, the assembled ZAB exhibits high power density of 155.55 mW cm−2 and long-term cycling stability over 216 h. Therefore, this work provides a versatile hard-soft template strategy to synthesize efficient ORR catalysts for ZABs application through the resource utilization of biomass.

Graphical abstract

Mesopore-dominated N, S co-doped carbon is synthesized by one-step pyrolysis of waste biomass and SiO2–ZnCl2 hard-soft templates. The optimal catalyst exhibits excellent ORR performances in alkaline and acid media as well as promising Zn-air battery application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Li H, Di S, Niu P, Wang S, Wang J, Li L (2022) A durable half-metallic diatomic catalyst for efficient oxygen reduction. Energy Environ Sci 15:1601. https://doi.org/10.1039/D1EE03194E

    Article  CAS  Google Scholar 

  2. Yang G, Zhu J, Yuan P et al (2021) Regulating Fe-spin state by atomically dispersed Mn–N in Fe–N–C catalysts with high oxygen reduction activity. Nat Commun 12:1734. https://doi.org/10.1038/s41467-021-21919-5

    Article  CAS  Google Scholar 

  3. Chen C, Sun Z, Li Y, Yi L, Hu H (2021) Retraction Note to: Self-assembly of N doped 3D porous carbon frameworks from carbon quantum dots and its application for oxygen reduction reaction. J Mater Sci-Mater Electron 32:12743. https://doi.org/10.1007/s10854-021-05873-y

    Article  CAS  Google Scholar 

  4. Lim J, Jung J-W, Kim N-Y et al (2020) N2-dopant of graphene with electrochemically switchable bifunctional ORR/OER catalysis for Zn-air battery. Energy Storage Mater 32:517. https://doi.org/10.1016/j.ensm.2020.06.034

    Article  Google Scholar 

  5. Chen C, Sun Z, Li Y, Yi L, Hu H (2021) Retraction Note to: self-assembly of N doped 3D porous carbon frameworks from carbon quantum dots and its application for oxygen reduction reaction. J Mater Sci Mater Electron 32:12743. https://doi.org/10.1007/s10854-021-05873-y

    Article  CAS  Google Scholar 

  6. Liu H, Liu Y, Mehdi S et al (2021) Surface phosphorus-induced CoO coupling to monolithic carbon for efficient air electrode of quasi-solid-state Zn–air batteries. Adv Sci 8:2101314. https://doi.org/10.1002/advs.202101314

    Article  CAS  Google Scholar 

  7. Fritz KE, Yan Y, Suntivich J (2020) Erratum to: Influence of 3d transition-metal substitution on the oxygen reduction reaction electrocatalysis of ternary nitrides in acid. Nano Res 13:2578. https://doi.org/10.1007/s12274-020-2939-x

    Article  Google Scholar 

  8. Bi Z, Kong Q, Cao Y et al (2019) Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes: a review. J Mater Chem A 7:16028. https://doi.org/10.1039/C9TA04436A

    Article  CAS  Google Scholar 

  9. Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K (2015) A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ Sci 8:2916. https://doi.org/10.1039/C5EE01985K

    Article  CAS  Google Scholar 

  10. Ait El Fakir A, Anfar Z, Enneiymy M, Jada A, El Alem N (2022) New insights into N, S doped carbon from conjugated polymers for efficient persulfate activation: Role of hydrogel beads in enhancement of stability. Chem Eng J 442:136055. https://doi.org/10.1016/j.cej.2022.136055

    Article  CAS  Google Scholar 

  11. Yan T, Yang L, Dai W et al (2018) On the deactivation mechanism of zeolite catalyst in ethanol to butadiene conversion. J Catal 367:7. https://doi.org/10.1016/j.jcat.2018.08.019

    Article  CAS  Google Scholar 

  12. Gao S, Li X, Li L, Wei X (2017) A versatile biomass derived carbon material for oxygen reduction reaction, supercapacitors and oil/water separation. Nano Energy 33:334. https://doi.org/10.1016/j.nanoen.2017.01.045

    Article  CAS  Google Scholar 

  13. Tian M, Zhang D, Wang M et al (2020) Engineering flexible 3D printed triboelectric nanogenerator to self-power electro-Fenton degradation of pollutants. Nano Energy 74:104908. https://doi.org/10.1016/j.nanoen.2020.104908

    Article  CAS  Google Scholar 

  14. Liu X, Li X, Zhao X, Gao Y, Cao Z, Liu J (2022) WS2@Co9S8@N/C core–shell as multifunctional electrocatalysts for dye-sensitized solar cell, oxygen reduction reaction and oxygen evolution reaction. J Mater Sci 57:6293. https://doi.org/10.1007/s10853-022-07028-8

    Article  CAS  Google Scholar 

  15. Nzediegwu C, Naeth MA, Chang SX (2022) Feedstock type drives surface property, demineralization and element leaching of nitric acid-activated biochars more than pyrolysis temperature. Bioresour Technol 344:126316. https://doi.org/10.1016/j.biortech.2021.126316

    Article  CAS  Google Scholar 

  16. Li S, Han K, Li J, Li M, Lu C (2017) Preparation and characterization of super activated carbon produced from gulfweed by KOH activation. Microporous Mesoporous Mater 243:291. https://doi.org/10.1016/j.micromeso.2017.02.052

    Article  CAS  Google Scholar 

  17. Zhao Z, Hao S, Hao P et al (2015) Lignosulphonate-cellulose derived porous activated carbon for supercapacitor electrode. J Mater Chem A 3:15049. https://doi.org/10.1039/C5TA02770E

    Article  CAS  Google Scholar 

  18. Hui TS, Zaini MAA (2015) Potassium hydroxide activation of activated carbon: a commentary. Carbon Lett 16:275. https://doi.org/10.5714/cl.2015.16.4.275

    Article  Google Scholar 

  19. Kim M-J, Choi SW, Kim H, Mun S, Lee KB (2020) Simple synthesis of spent coffee ground-based microporous carbons using K2CO3 as an activation agent and their application to CO2 capture. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125404

    Article  Google Scholar 

  20. Zhao Y, Li X, Jia X, Gao S (2019) Why and how to tailor the vertical coordinate of pore size distribution to construct ORR-active carbon materials? Nano Energy 58:384. https://doi.org/10.1016/j.nanoen.2019.01.057

    Article  CAS  Google Scholar 

  21. Li X, Zhao Y, Yang Y, Gao S (2019) A universal strategy for carbon–based ORR–active electrocatalyst: one porogen, two pore–creating mechanisms, three pore types. Nano Energy 62:628. https://doi.org/10.1016/j.nanoen.2019.05.066

    Article  CAS  Google Scholar 

  22. Astafan A, Benghalem MA, Pouilloux Y et al (2016) Particular properties of the coke formed on nano-sponge *BEA zeolite during ethanol-to-hydrocarbons transformation. J Catal 336:1. https://doi.org/10.1016/j.jcat.2016.01.002

    Article  CAS  Google Scholar 

  23. Ashraf MA, Liu Z, Zhang D, Najafi M (2020) Aluminum-doped silicon nanocage and boron-doped carbon nanocage as catalysts to oxygen reduction reaction (ORR): a computational investigation. Ionics 26:3085. https://doi.org/10.1007/s11581-020-03450-7

    Article  CAS  Google Scholar 

  24. Liu M, Zhu F, Cao W et al (2022) Multifunctional sulfate-assistant synthesis of seaweed-like N, S-doped carbons as high-performance anodes for K-ion capacitors. J Mater Chem A. https://doi.org/10.1039/D2TA01431A

    Article  Google Scholar 

  25. Yang G, Wang L, Jiang H (2021) Preparation of β zeolite with intracrystalline mesoporosity via surfactant -templating strategy and its application in ethanol-acetaldehyde to butadiene. Microporous Mesoporous Mater 316:110949. https://doi.org/10.1016/j.micromeso.2021.110949

    Article  CAS  Google Scholar 

  26. Zhang M, Qin Y, Jiang H, Wang L (2021) Protective desilication of β zeolite: A mechanism study and its application in ethanol-acetaldehyde to 1,3-butadiene. Microporous Mesoporous Mater 326:111359. https://doi.org/10.1016/j.micromeso.2021.111359

    Article  CAS  Google Scholar 

  27. Fan L, Yang L, Ni X, Han J, Guo R, Zhang C (2016) Nitrogen-enriched meso-macroporous carbon fiber network as a binder-free flexible electrode for supercapacitors. Carbon 107:629. https://doi.org/10.1016/j.carbon.2016.06.067

    Article  CAS  Google Scholar 

  28. Wan X, Liu X, Li Y et al (2019) Fe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat Catal 2:259. https://doi.org/10.1038/s41929-019-0237-3

    Article  CAS  Google Scholar 

  29. Mendoza R, Oliva J, Rodriguez-Gonzalez V (2022) Effect of the micro-, meso- and macropores on the electrochemical performance of supercapacitors: a review. Int J Energy Res 46:6989. https://doi.org/10.1002/er.7670

    Article  CAS  Google Scholar 

  30. Li X, Guan BY, Gao S, Lou XW (2019) A general dual-templating approach to biomass-derived hierarchically porous heteroatom-doped carbon materials for enhanced electrocatalytic oxygen reduction. Energy Environ Sci 12:648. https://doi.org/10.1039/C8EE02779J

    Article  Google Scholar 

  31. Dolas H, Sahin O, Saka C, Demir H (2011) A new method on producing high surface area activated carbon: the effect of salt on the surface area and the pore size distribution of activated carbon prepared from pistachio shell. Chem Eng J 166:191. https://doi.org/10.1016/j.cej.2010.10.061

    Article  CAS  Google Scholar 

  32. Hussein MAT, Motawea MM, Elsenety MM, El-Bahy SM, Gomaa H (2022) Mesoporous spongy Ni–Co oxides@wheat straw-derived SiO2 for adsorption and photocatalytic degradation of methylene blue pollutants. Appl Nanosci. https://doi.org/10.1007/s13204-021-02318-0

    Article  Google Scholar 

  33. Zhang W, Chen Y-P, Zhang L, Feng J-J, Li X-S, Wang A-J (2022) Theophylline-regulated pyrolysis synthesis of nitrogen-doped carbon nanotubes with iron-cobalt nanoparticles for greatly boosting oxygen reduction reaction. J Colloid Interface Sci 626:653. https://doi.org/10.1016/j.jcis.2022.06.130

    Article  CAS  Google Scholar 

  34. Ma Q, Jin H, Zhu J et al (2021) Stabilizing Fe–N–C catalysts as model for oxygen reduction reaction. Adv Sci 8:2102209. https://doi.org/10.1002/advs.202102209

    Article  CAS  Google Scholar 

  35. Sharma S, Basu S, Shetti NP, Mondal K, Sharma A, Aminabhavi TM (2022) Versatile graphitized carbon nanofibers in energy applications. ACS Sustain Chem Eng 10:1334. https://doi.org/10.1021/acssuschemeng.1c06762

    Article  CAS  Google Scholar 

  36. Cui L, Cui L, Li Z et al (2019) A copper single-atom catalyst towards efficient and durable oxygen reduction for fuel cells. J Mater Chem A 7:16690. https://doi.org/10.1039/C9TA03518D

    Article  CAS  Google Scholar 

  37. Yu H, Shang L, Bian T et al (2016) Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction. Adv Mater 28:5080. https://doi.org/10.1002/adma.201600398

    Article  CAS  Google Scholar 

  38. Raveendran K, Ganesh A, Khilar KC (1996) Pyrolysis characteristics of biomass and biomass components. Fuel 75:987. https://doi.org/10.1016/0016-2361(96)00030-0

    Article  CAS  Google Scholar 

  39. Wei X, Li H, Ce Yuan Q, Li SC (2009) Preparation of nano-ZnO supported on porous carbon and the growth mechanism. Microporous Mesoporous Mater 118:307. https://doi.org/10.1016/j.micromeso.2008.09.008

    Article  CAS  Google Scholar 

  40. Taheri E, Fatehizadeh A, Lima EC, Rezakazemi M (2022) High surface area acid-treated biochar from pomegranate husk for 2, 4-dichlorophenol adsorption from aqueous solution. Chemosphere 295:133850. https://doi.org/10.1016/j.chemosphere.2022.133850

    Article  CAS  Google Scholar 

  41. Xu D, Tong Y, Yan T, Shi L, Zhang D (2017) N, P-codoped meso-/microporous carbon derived from biomass materials via a dual-activation strategy as high-performance electrodes for deionization capacitors. ACS Sustainable Chem Eng 5:5810. https://doi.org/10.1021/acssuschemeng.7b00551

    Article  CAS  Google Scholar 

  42. Men B, Sun Y, Li M et al (2016) Hierarchical metal-free nitrogen-doped porous graphene/carbon composites as an efficient oxygen reduction reaction catalyst. ACS Appl Mater Interfaces 8:1415. https://doi.org/10.1021/acsami.5b10642

    Article  CAS  Google Scholar 

  43. Wang S, Qin J, Meng T, Cao M (2017) Metal-organic framework-induced construction of actiniae-like carbon nanotube assembly as advanced multifunctional electrocatalysts for overall water splitting and Zn-air batteries. Nano Energy 39:626. https://doi.org/10.1016/j.nanoen.2017.07.043

    Article  CAS  Google Scholar 

  44. Yan Q, Sun R-M, Wang L-P, Feng J-J, Zhang L, Wang A-J (2021) Cobalt nanoparticles/ nitrogen, sulfur-codoped ultrathin carbon nanotubes derived from metal organic frameworks as high-efficiency electrocatalyst for robust rechargeable zinc-air battery. J Colloid Interface Sci 603:559. https://doi.org/10.1016/j.jcis.2021.06.133

    Article  CAS  Google Scholar 

  45. Ren J-T, Yuan Z-Y (2019) Bifunctional electrocatalysts of cobalt sulfide nanocrystals in situ decorated on N, S-codoped porous carbon sheets for highly efficient oxygen electrochemistry. ACS Sustain Chem Eng 7:10121. https://doi.org/10.1021/acssuschemeng.9b01699

    Article  CAS  Google Scholar 

  46. Xue X, Yang H, Yang T et al (2019) N, P-coordinated fullerene-like carbon nanostructures with dual active centers toward highly-efficient multi-functional electrocatalysis for CO2RR, ORR and Zn-air battery. J Mater Chem A 7:15271. https://doi.org/10.1039/C9TA03828K

    Article  CAS  Google Scholar 

  47. Zhang J, Zhang J, He F et al (2021) Defect and doping co-engineered non-metal nanocarbon ORR electrocatalyst. Nano-Micro Lett 13:65. https://doi.org/10.1007/s40820-020-00579-y

    Article  CAS  Google Scholar 

  48. Li L, Yang H, Miao J et al (2017) Unraveling oxygen evolution reaction on carbon-based electrocatalysts: effect of oxygen doping on adsorption of oxygenated intermediates. ACS Energy Lett 2:294. https://doi.org/10.1021/acsenergylett.6b00681

    Article  CAS  Google Scholar 

  49. Fan X-Z, Du X, Pang Q-Q, Zhang S, Liu Z-Y, Yue X-Z (2022) In situ construction of bifunctional N-doped carbon-anchored Co nanoparticles for OER and ORR. ACS Appl Mater Interfaces 14:8549. https://doi.org/10.1021/acsami.1c21445

    Article  CAS  Google Scholar 

  50. He Y, Yang X, Li Y et al (2022) Atomically dispersed Fe-Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible zn-air batteries. ACS Catal 12:1216. https://doi.org/10.1021/acscatal.1c04550

    Article  CAS  Google Scholar 

  51. Liu Z, Wan J, Li M, Shi Z, Liu J, Tang Y (2022) Synthesis of Co/CeO2 hetero-particles with abundant oxygen-vacancies supported by carbon aerogels for ORR and OER. Nanoscale 14:1997. https://doi.org/10.1039/D1NR07595K

    Article  CAS  Google Scholar 

  52. Wang B, Tang J, Zhang X et al (2022) Nitrogen doped porous carbon polyhedral supported Fe and Ni dual-metal single-atomic catalysts: template-free and metal ligand-free sysnthesis with microwave-assistance and d-band center modulating for boosted ORR catalysisin zinc-air batteries. Chem Eng J. https://doi.org/10.1016/j.cej.2022.135295

    Article  Google Scholar 

  53. Cai W, Zhang Y, Jia Y, Yan J (2020) Flexible heteroatom-doped porous carbon nanofiber cages for electrode scaffolds. Carbon Energy 2:472. https://doi.org/10.1002/cey2.46

    Article  CAS  Google Scholar 

  54. Zhao M, Liu H, Zhang H et al (2021) A pH-universal ORR catalyst with single-atom iron sites derived from a double-layer MOF for superior flexible quasi-solid-state rechargeable Zn–air batteries. Energy Environ Sci 14:6455. https://doi.org/10.1039/D1EE01602D

    Article  CAS  Google Scholar 

  55. Zhao Y, Liu Y, Chen Y, Liu X, Li X, Gao S (2021) A treasure map for nonmetallic catalysts: optimal nitrogen and fluorine distribution of biomass-derived carbon materials for high-performance oxygen reduction catalysts. J Mater Chem A 9:18251. https://doi.org/10.1039/d1ta05485f

    Article  CAS  Google Scholar 

  56. Han Z, Feng J-J, Yao Y-Q, Wang Z-G, Zhang L, Wang A-J (2021) Mn, N, P-tridoped bamboo-like carbon nanotubes decorated with ultrafine Co2P/FeCo nanoparticles as bifunctional oxygen electrocatalyst for long-term rechargeable Zn-air battery. J Colloid Interface Sci 590:330. https://doi.org/10.1016/j.jcis.2021.01.053

    Article  CAS  Google Scholar 

  57. Chen Y-P, Lin S-Y, Sun R-M et al (2022) FeCo/FeCoP encapsulated in N, Mn-codoped three-dimensional fluffy porous carbon nanostructures as highly efficient bifunctional electrocatalyst with multi-components synergistic catalysis for ultra-stable rechargeable Zn-air batteries. J Colloid Interface Sci 605:451. https://doi.org/10.1016/j.jcis.2021.07.082

    Article  CAS  Google Scholar 

  58. Sun R-M, Zhang L, Feng J-J, Fang K-M, Wang A-J (2022) In situ produced Co9S8 nanoclusters/Co/Mn-S, N multi-doped 3D porous carbon derived from eriochrome black T as an effective bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries. J Colloid Interface Sci 608:2100. https://doi.org/10.1016/j.jcis.2021.10.144

    Article  CAS  Google Scholar 

  59. Gao S, Yang H, Rao D et al (2022) Supercritical CO2 assisted synthesis of highly accessible iron single atoms and clusters on nitrogen-doped carbon as efficient oxygen reduction electrocatalysts. Chem Eng J 433:134460. https://doi.org/10.1016/j.cej.2021.134460

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51872076 and U1804255), the Program for Innovative Research Team of Henan Scientific Committee (CXTD2014033), the Project of Central Plains Science and Technology Innovation Leading Talents, Henan Province (Grant no. 194200510001), and the Scientific and Technological Research Project, Henan Province (Grant no. 212102210651).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongliang Li or Xupo Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in this paper.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1734 KB)

Supplementary file2 (MP4 3030 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Chen, Y., Zhao, Y. et al. Mesopore-dominated N, S co-doped carbon as advanced oxygen reduction reaction electrocatalysts for Zn-air battery. J Mater Sci 57, 19431–19446 (2022). https://doi.org/10.1007/s10853-022-07784-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07784-7

Navigation