Skip to main content
Log in

Palladium Nanoparticles from Different Reducing Systems as Heck Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Palladium(0) nanoparticles have been widely used in cross coupling reactions, including Heck reactions. For this study, we synthesized palladium(0) nanoparticles in colloidal suspension using different combinations of solvents and reducing methods under aerobic conditions. The variation in systems used to synthesize palladium(0) nanoparticles resulted in different nanoparticle sizes. To investigate whether the particle size had an effect on catalysis, we first used common Heck C–C cross-coupling reaction conditions (200 °C and 18 h). In addition, we omitted the use of stabilizing agents, other than the solvent and/or the anions in the initial nanoparticle synthesis, since the use of stabilizing agents adds cost and processing time to catalysis. All of the catalysts investigated worked in the cross coupling C–C Heck reaction, but yields did not show appreciable differences, as high temperature and long reaction times promote a high reduction of palladium(II). Therefore, we decided to work with a temperature and reaction time in which conversion would start to be observed (minimum reaction conditions). The experiments to determine minimum reaction conditions showed that this would be 120 °C and 10 h, therefore we used these conditions in Heck C–C cross-coupling reactions and all the palladium nanoparticle systems. The best C–C catalysis conversion was observed when N,N-dimethylformamide was used as solvent in the absence of reducing agent. This catalyst system resulted in the largest possible nanoparticles, which were kept in dispersion (did not precipitate out), showing that size is important in obtaining good yields in C–C Heck catalysis (where cocktail-type catalysis could explain the conversion). Nanoparticles of this size also act as a reservoir of soluble palladium species that behave as the true catalyst. The second best conversion was observed in N,N-dimethylformamide with sodium citrate, where citrate may have added extra protection, and since the palladium(0) nanoparticles were small, cocktail-type catalysis was not involved in obtaining high yields.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ouchaib T, Massardier J, Renouprez A (1989) Competitive hydrogenation of butadiene and butane on palladium and platinum catalysts. J Catal 119:517–520. https://doi.org/10.1016/0021-9517(89)90180-2

    Article  CAS  Google Scholar 

  2. Astruc D (2007) Palladium nanoparticles as efficient green homogeneous and heterogeneous carbon-carbon coupling precatalysts: a unifying view. Inorg Chem 46:1884–1894. https://doi.org/10.1021/ic062183h

    Article  PubMed  CAS  Google Scholar 

  3. Franzén R (2000) The Suzuki, the Heck, and the Stille reaction-three versatile methods for the introduction of new C-C bonds on solid support. Can J Chem 78:957–962. https://doi.org/10.1139/v00-089

    Article  Google Scholar 

  4. Kim SW, Kim M, Lee W et al (2002) Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J Am Chem Soc 124:7642–7643. https://doi.org/10.1021/ja026032z

    Article  PubMed  CAS  Google Scholar 

  5. Son S, Jang Y, Park J et al (2004) Designed synthesis of atom-economical Pd/Ni bimetallic nanoparticle-based catalysts for Sonogashira coupling reactions. J Am Chem Soc 126:5026–5027. https://doi.org/10.1021/ja039757r

    Article  PubMed  CAS  Google Scholar 

  6. Rossy C, Fouquet E (2012) A sustainable procedure combining the advantages of both homogeneous and heterogeneous catalysis for the Heck-Matsuda reaction. Synthesis 44:37–41. https://doi.org/10.1055/s-0031-1289585

    Article  CAS  Google Scholar 

  7. Moreno-Mañas M, Pleixats R (2003) Formation of carbon-carbon bonds under catalysis by transition-metal nanoparticles. AccChem Res 36:638–643. https://doi.org/10.1021/ar020267y

    Article  CAS  Google Scholar 

  8. Sato R, Kanehara M, Teranishi T (2011) Homoepitaxial size control and large-scale synthesis of highly monodisperse amine-protected palladium nanoparticles. Small 7:469–473. https://doi.org/10.1002/smll.201001685

    Article  PubMed  CAS  Google Scholar 

  9. Pomogailo A, Dzhardimalieva G (2013) Hybrid polymer-immobilized nanosized Pd catalysts for hydrogenation reaction obtained via frontal polymerization. J Catal. https://doi.org/10.1155/2013/276210

    Article  Google Scholar 

  10. Giachi G, Oberhauser W, Frediani M et al (2013) Pd-nanoparticles stabilized by pyridine-functionalized poly(ethylene glycol) as catalyst for the aerobic oxidation of α, β-unsaturated alcohols in water. PolymChem 51:2518–2526. https://doi.org/10.1002/pola.26645

    Article  CAS  Google Scholar 

  11. Ornelas C, Diallo A, Ruiz J et al (2009) Click, polymer-supported palladium nanoparticles as highly efficient catalysts for olefin hydrogenation and Suzuki coupling reactions under ambient conditions. Adv Synth Catal 351:2147–2154. https://doi.org/10.1002/adsc.200900270

    Article  CAS  Google Scholar 

  12. Reetz M, Breinbauer R, Wanninger K (1996) Suzuki and Heck reactions catalyzed by preformed palladium clusters and palladium/nickel bimetallic clusters. Tetrahedron Lett 37:4499–4502. https://doi.org/10.1016/0040-4039(96)00924-0

    Article  CAS  Google Scholar 

  13. Rahim E, Kamounah F, Frederiksen J (2001) Heck reactions catalyzed by PAMAM-dendrimer encapsulated Pd(0) nanoparticles. Nano Lett 1:499–501. https://doi.org/10.1021/nl015574w

    Article  CAS  Google Scholar 

  14. Yeung L, Crooks R (2001) Heck heterocoupling within a dendritic nanoreactor. Nano Lett 1:14–17. https://doi.org/10.1021/nl0001860

    Article  CAS  Google Scholar 

  15. Servin P, Laurent R, Romerosa A et al (2008) Synthesis of dendrimers terminated by bis(diphenylphosphinomethyl)amino ligands and use of their palladium complexes for catalyzing C-C cross-coupling reactions. Organometallics 27:2066–2073. https://doi.org/10.1021/om800008p

    Article  CAS  Google Scholar 

  16. Oh S, Niu Y, Crooks R (2005) Size-selective catalytic activity of Pd nanoparticles encapsulated within end-group functionalized dendrimers. Langmuir 21:10209–10213. https://doi.org/10.1021/la050524i

    Article  PubMed  CAS  Google Scholar 

  17. Oosterom G, Reek J, Kamer P et al (2001) Transition metal catalysis using functionalized dendrimers. AngewChem -Int Edit 40:1828–1849. https://doi.org/10.1002/1521-3773(20010518)40:10%3c1828::AID-ANIE1828%3e3.0.CO;2-Y

    Article  CAS  Google Scholar 

  18. Cotugno P, Monopoli A, Ciminale F (2012) Pd nanoparticle catalyzed one-pot sequential Heck and Suzuki couplings of bromo-chloroarenes in ionic liquids and water. Org BiomolChem 10:808–813. https://doi.org/10.1039/c1ob06385e

    Article  CAS  Google Scholar 

  19. Prechtl M, Scholten J, Dupont J (2010) Carbon-Carbon cross coupling reactions in ionic liquids catalyzed by palladium metal nanoparticles. Molecules 15:3441–3461. https://doi.org/10.3390/molecules15053441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ding K, Yang H, Cao Y et al (2013) Using ionic liquid as the solvent to prepare Pd- Ni bimetallic nanoparticles by a pyrolysis method for ethanol oxidation reaction. Mater ChemPhys 142:403–411. https://doi.org/10.1016/j.matchemphys.2013.07.036

    Article  CAS  Google Scholar 

  21. Cha J, Park Y, Hong Y et al (2012) Electrochemical preparation of ionic-liquid-stabilized palladium nanoparticles. NanosciNanotechnol 12:3641–3645. https://doi.org/10.1166/jnn.2012.5590

    Article  CAS  Google Scholar 

  22. Templeton A, Wuelfing W, Murray R (2000) Monolayer-protected cluster molecules. AccChem Res 33:27–36. https://doi.org/10.1021/ar9602664

    Article  CAS  Google Scholar 

  23. Nichick M, Voitekhovich S, Lesnyak V et al (2011) 1-substituted tetrazole-5-thiol-capped nobel metal nanoparticles. J Phys Chem C 115:16928–16933. https://doi.org/10.1021/jp205649y

    Article  CAS  Google Scholar 

  24. Lu C, Chang F (2011) Polyhedral oligomeric silsesquioxane-encapsulating amorphous palladium nanoclusters as catalysts for heck reactions. ACS Catal 1:481–488. https://doi.org/10.1021/cs200106s

    Article  CAS  Google Scholar 

  25. Aslam M, Schultz E, Sun T et al (2007) Synthesis of amine-stabilized aqueous colloidal iron oxide nanoparticles. Cryst Growth Des 7:471–475. https://doi.org/10.1021/cg060656p

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Brown L, Hutchison J (1999) Controlled growth of gold nanoparticles during ligand exchange. J Am Chem Soc 121:882–883. https://doi.org/10.1021/ja983510q

    Article  CAS  Google Scholar 

  27. Hajipour A, Azizi G (2013) The [RPPh3]2[Pd2X6] as a catalyst precursor for the Heck cross-coupling reaction by in situ formation of stabilized Pd(0) nanoparticles. Synlett 24:254–258. https://doi.org/10.1055/s-0032-1317963

    Article  CAS  Google Scholar 

  28. Hamza K, Abu-Reziq R, Avnir D (2004) Heck vinylation of aryl iodides by a silica sol-gel entrapped Pd(II) catalyst and its combination with a photocyclation process. Org Lett 6:925–927. https://doi.org/10.1021/ol030140o

    Article  PubMed  CAS  Google Scholar 

  29. Dass A, Guo R, Tracy J et al (2008) Gold nanoparticles with perfluorothiolate ligands. Langmuir 24:310–315. https://doi.org/10.1021/la702651y

    Article  PubMed  CAS  Google Scholar 

  30. Yue R, Wang C, Jiang F et al (2013) Electrocatalytic oxidation of formic acid on Pt-Pd decorated polyfluorenes with hydroxyl and carboxyl substitution. Int J Hydrog Energy 38:12755–12766. https://doi.org/10.1016/j.ijhydene.2013.07.074

    Article  CAS  Google Scholar 

  31. Jagtap S, Deshpande R (2013) Insight into PdCl2(bipy) complex as an efficient catalyst for Heck reaction and kinetic investigations in homogeneous medium. KinetCatal 54:314–321. https://doi.org/10.1134/S0023158413030051

    Article  CAS  Google Scholar 

  32. Fujimoto T, Mizukoshi Y, Nagata Y et al (2001) Sonolytical preparation of various types of metal nanoparticles in aqueous solution. Scr Mater 44:2183–2186. https://doi.org/10.1016/S1359-6462(01)00900-9

    Article  CAS  Google Scholar 

  33. Mizukoshi Y, Takagi E, Okuno H et al (2001) Preparation of platinum nanoparticles by sonochemical reduction of the Pt(IV) ions: role of surfactants. Ultras Sonochem 8:1–6. https://doi.org/10.1016/S1350-4177(00)00027-4

    Article  CAS  Google Scholar 

  34. Biffis A, Centomo P, Del Zotto A et al (2018) Pd metal catalysts for cross-couplings and related reactions in the 21st century: a critical review. Chem Rev 118:2249–2295. https://doi.org/10.1021/acs.chemrev.7b00443

    Article  PubMed  CAS  Google Scholar 

  35. Hong K, Sajjadi M, Suh JM et al (2020) Palladium nanoparticles on assorted nanostructured supports: applications for suzuki, heck, and sonogashira cross-coupling reactions. ACS ApplNano Mater 3(3):2070–2103. https://doi.org/10.1021/acsanm.9b02017

    Article  CAS  Google Scholar 

  36. Shokouhimehr M, Yek SM-G, Nasrollahzadeh M et al (2019) Palladium nanocatalysts on hydroxyapatite: green oxidation of alcohols and reduction of nitroarenes in water. ApplSci 9(19):4183. https://doi.org/10.3390/app9194183

    Article  CAS  Google Scholar 

  37. Alamgholiloo H, Rostamnia S, Zhang K et al (2020) Boosting aerobic oxidation of alcohols via synergistic effect between TEMPO and a composite Fe3O4/Cu-BDC/GO nanocatalyst. ACS Omega 5:5182–5191. https://doi.org/10.1021/acsomega.9b04209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Alamgholiloo H, Rostamnia S, Hassankhani A et al (2020) Formation and stabilization of colloidal ultra-small palladium nanoparticles on diamine-modified Cr-MIL-101: synergic boost to hydrogen production from formic acid. J Colloid Interface Sci 567:126–135. https://doi.org/10.1016/j.jcis.2020.01.087

    Article  PubMed  CAS  Google Scholar 

  39. Shokouhimehr M, Hong K, Lee TH et al (2018) Magnetically retrievable nanocomposite adorned with Pd nanocatalysts: efficient reduction of nitroaromatics in aqueous media. Green Chem 20(16):3809–3817. https://doi.org/10.1039/c8gc01240g

    Article  CAS  Google Scholar 

  40. Shokouhimehr M (2015) Magnetically separable and sustainable nanostructured catalysts for heterogeneous reduction of nitroaromatics. Catalysts 5(2):534–560. https://doi.org/10.3390/catal5020534

    Article  CAS  Google Scholar 

  41. Zhang K, Cha JH, Jeon SY et al (2020) Pd modified prussian blue frameworks: multiple electron transfer pathways for improving catalytic activity toward hydrogenation of nitroaromatics. MolCatal 492:110967. https://doi.org/10.1016/j.mcat.2020.110967

    Article  CAS  Google Scholar 

  42. Yek SM-G, Azarifar D, Nasrollahzadeh M et al (2020) HeterogenizedCu(II) complex of 5-aminotetrazole immobilized on graphene oxide nanosheets as an efficient catalyst for treating environmental contaminants. PurifTechnol 247:116952. https://doi.org/10.1016/j.seppur.2020.116952

    Article  CAS  Google Scholar 

  43. De Vries AHM, Mulders JMCA, Mommers JHM et al (2003) Homeopathic ligand-free palladium as a catalyst in the heck reaction. A comparison with a palladacycle. Org Lett 5(18):3285–3288. https://doi.org/10.1021/ol035184b

    Article  PubMed  CAS  Google Scholar 

  44. Evans J, O’Neill L, Kambhampati VL et al (2002) Structural characterisation of solution species implicated in the palladium-catalysed Heck reaction by Pd K-edge X-ray absorption spectroscopy: palladium acetate as a catalyst precursor. J ChemSoc Dalton Trans. https://doi.org/10.1039/b200617k

    Article  Google Scholar 

  45. De Vries AHM, Parlevliet FJ, Schmieder-van de Vondervoort L et al (2002) A practical recycle of a ligand-free palladium catalyst for heck reactions. Adv Synth Catal 344:996–1002. https://doi.org/10.1002/1615-4169(200210)344:9%3c996::AID-ADSC996%3e3.0.CO;2-J

    Article  Google Scholar 

  46. Reedtz MT, de Vries JG (2004) Ligand-free Heck reactions using low Pd-loading. ChemCommun. https://doi.org/10.1039/b406719n

    Article  Google Scholar 

  47. Roy D, Uozumi Y (2018) Recent advances in palladium-catalyzed cross-coupling reactions at ppm to ppb molar catalyst loadings. Adv Synth Catal 360:602–625. https://doi.org/10.1002/adsc.201700810

    Article  CAS  Google Scholar 

  48. Chen J, Wang G, Wang X et al (2013) Synthesis of highly dispersed Pd nanoparticles with high activity for formic acid electro-oxidation. J Mater Res 28:1553–1558. https://doi.org/10.1557/jmr.2013.137

    Article  CAS  Google Scholar 

  49. Vitale F, Vitaliano R, Battocchio C et al (2008) Synthesis and microstructural investigations of organometallic Pd(II) thiol-gold nanoparticles hybrids. Nanoscale Res Lett 3:461–467. https://doi.org/10.1007/s11671-008-9181-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bronstein L, Linton C, Karlinsey R et al (2002) Synthesis of metal-loaded poly(aminohexyl)(aminopropyl)silsesquioxane colloids and their self-organization into dendrites. Nano Lett 2:873–876. https://doi.org/10.1021/nl025543g

    Article  CAS  Google Scholar 

  51. Ho P, Chi K (2004) Size-controlled synthesis of Pd nanoparticles from β-diketonato complex of palladium. Nanotechnology 15:1059–1064. https://doi.org/10.1088/0957-4484/15/8/035

    Article  CAS  Google Scholar 

  52. Li F, Guo Y, Li R et al (2013) A facile method to synthesize supported Pd-Au nanoparticles using grapheme oxide as the reductant and their extremely high electrocatalytic activity for the electrooxidation of methanol and ethanol. J Mater Chem A 1:6579. https://doi.org/10.1039/C3TA11139

    Article  CAS  Google Scholar 

  53. Yuan S, Sheng Q, Zhang J et al (2006) Synthesis of Pd nanoparticles in La-doped mesoporoustitania with polycrystaline framework. CatalLett 107:19–24. https://doi.org/10.1007/s10562-005-9726-x

    Article  CAS  Google Scholar 

  54. Scirè S, Giuffrida S, Crisafulli C et al (2011) Direct and sensitized liquid phase photodeposition for the preparation of alumina supported Pd nanoparticles for applications to heterogeneous catalysis. J Nanopart Res 13:3217–3228. https://doi.org/10.1007/s11051-011-0222-5

    Article  CAS  Google Scholar 

  55. Tripathi S, Kumar M (2003) Preparation of alumina stabilized aqueous Pd colloid by reduction using gamma-radiolysis, UV-photolysis and H2. J Radioanal Nucl Chem 256:565–569. https://doi.org/10.1023/A:1024524421486

    Article  CAS  Google Scholar 

  56. Mori K, Furubayashi K, Okada S et al (2012) Synthesis of Pd nanoparticles on heteropolyacid-supported silica by a photo-assisted deposition method: an active catalyst for the direct synthesis of hydrogen peroxide. RSC Adv 2:1047–1054. https://doi.org/10.1039/C1RA00926E

    Article  CAS  Google Scholar 

  57. Zhang Z, Zha Z, Gan C et al (2006) Catalysis and regioselectivity of the aqueous Heck reaction by Pd(0) nanoparticles under ultrasonic irradiation. J Org Chem 71:4339–4342. https://doi.org/10.1021/jo060372b

    Article  PubMed  CAS  Google Scholar 

  58. Fujimoto T, Terauchi S, Umehara H et al (2001) Sonochemical preparation of single-dispersion metal nanoparticles from metal salts. Chem Mater 13:1057–1060. https://doi.org/10.1021/cm000910f

    Article  CAS  Google Scholar 

  59. Taguchi N, Iwase A, Maeda N et al (2009) Synthesis of Au-Pd bimetallic nanoparticles under energetic irradiation fields. RadiatPhysChem 78:1049–1053. https://doi.org/10.1016/j.radphyschem.2009.05.007

    Article  CAS  Google Scholar 

  60. Yilmaz U, Kücükbay H (2013) Synthesis of novel benzimidazole salts and microwave-assisted catalytic activity of in situ generated Pd nanoparticles from a catalyst system consisting of benzimidazol salt, Pd(OAc)2, and base in a Suzuki-Miyaura reaction. Turk J Chem 37:721–733. https://doi.org/10.3906/kim-1207-18

    Article  CAS  Google Scholar 

  61. Yamada M, Nishihara H (2003) Electrochemical deposition of metal nanoparticles functionalized with multiple redox molecules. C R Chim 6:919–934. https://doi.org/10.1016/j.crci.2003.07.005

    Article  CAS  Google Scholar 

  62. Anderson GK, Lin M (1990) Bis(benzonitrile)dichloro complexes of palladium and platinum. InorgSyn 28:60. https://doi.org/10.1002/9780470132593.ch13

    Article  CAS  Google Scholar 

  63. Redón R, Rendón-Lara SK, Fernández-Osorio AL et al (2011) Aerobic synthesis of palladium nanoparticles. Rev Adv Mater Sci 27(1):31–42

    Google Scholar 

  64. Sherwood J, Clark JH, Fairlamb JS et al (2019) Solvent effects in palladium catalysed cross-coupling reactions. Green Chem 21:2164–2213. https://doi.org/10.1039/c9c00617f

    Article  CAS  Google Scholar 

  65. Gavrilin MV, Senchukova GV, Kompantseva EV (2000) Method for the synthesis and analysis of dimethyl sulfoxide (a review). Pharm Chem J 34:490–493. https://doi.org/10.1023/A:1005298426614

    Article  CAS  Google Scholar 

  66. Eremin DB, Ananikov VP (2017) Understanding active species in catalytic transformations: from molecular catalysis to nanoparticles, leaching, ‘‘cocktails” of catalysts and dynamic systems. CoordChem Rev 346:2–19. https://doi.org/10.1016/j.ccr.2016.12.021

    Article  CAS  Google Scholar 

  67. De Vries JG (2014) Twenty-Five years of homogeneous catalysis for the production of bulk fine chemicals: a personal account. Top Catal 57(17–20):1306–1317. https://doi.org/10.1007/s11244-014-0297-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research described in this paper was financially supported by PAPIIT (IN114217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocío Redón.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redón, R., González-García, T., Espinoza-Flores, L. et al. Palladium Nanoparticles from Different Reducing Systems as Heck Catalysts. Catal Lett 152, 151–161 (2022). https://doi.org/10.1007/s10562-021-03613-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03613-9

Keywords

Navigation