Skip to main content
Log in

Twenty-Five Years of Homogeneous Catalysis for the Production of Bulk and Fine Chemicals: A Personal Account

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

A personal account is given of a selection of the research projects the author has been involved in over the past 25 years, aimed at developing production processes for fine chemicals and bulk chemicals using homogeneous catalysis. The focus in fine chemicals has been on asymmetric hydrogenation using monodentate phosphoramidites (MonoPhos), palladium-catalysed C–C bond formation (“homeopathic palladium”), copper-catalysed amination, nanocatalysis and combinations of enzymes and homogeneous catalysis. Rhodium-catalysed isomerising hydroformylation was developed for a new process for caprolactam based on butadiene and palladium-catalysed methoxycarbonylation was used in a new adipic acid process based on levulinic acid. The use of high throughput experimentation has been crucial in a large part of this research. Collaborations with universities, in particular with the University of Groningen has also played a major role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17

Similar content being viewed by others

Notes

  1. The high enantioselectivity is even more surprising in view of the fact that the sulfonation of a single aryl ring makes the phosphorus atom chiral. We were able to show by chiral HPLC that this leads to formation of a 1:1 mixture of diastereomers. The proximity of the sulfonate to the cationic rhodium centre may induce a conformation that leads to high enantioselectivity. Buriak, Osborn and co-workers have studied the effect of anions on the ee in enantioselective imine hydrogenation [6].

  2. This phenol from benzoic acid process was originally developed by Dow and had the advantage that no acetone was produced as side product as in the more usual cumene oxidation process.

  3. If the product can be enriched by crystallisation at some stage during the synthesis, the ee can obviously be lower than 99 %. However, the lower ee translates into a loss of product, hence the ee should be as high as possible 90 % is generally seen as a reasonable cut-off. However, it is my experience that during the process development the temperature of the process is raised somewhat to increase productivity. Hence the research target of 95 %.

References

  1. Willems JGH, de Vries JG, Nolte RJM, Zwanenburg B (1995) Tetrahedron Lett 36:3917

    Article  CAS  Google Scholar 

  2. Bakos J, Orosz A, Heil B, Laghmari M, Lhoste P, Sinou D (1991) J Chem Soc Chem Commun 1684

  3. Lensink C, de Vries JG (1992) Tetrahedron Asymmetry 3:235

    Article  CAS  Google Scholar 

  4. Lensink C, Rijnberg E, de Vries JG (1997) J Mol Catal A 116:199

    Article  CAS  Google Scholar 

  5. Buriak JM, Klein JC, Herrington DG, Osborn JA (2000) Chem Eur J 6:139

    Article  CAS  Google Scholar 

  6. Mršić N, Minnaard AJ, Feringa BL, de Vries JG (2009) J Am Chem Soc 131:8358

    Article  Google Scholar 

  7. Pannetier N, Sortais J-B, Issenhuth J-T, Barloy Sirlin LC, Holuigue A, Lefort L, Panella L, de Vries JG, Pfeffer M (2011) Adv Synth Catal 353:2844

    Article  CAS  Google Scholar 

  8. Teunissen AJJM, de Vries JG, Gelling OJ, Lensink C (1994) WO 9426688, to DSM n.v

  9. Hansen CB, de Vries JG (1995) WO 9518089 to DSM. N.V. and E. I. Dupont de Nemours and Company

  10. Burke PM, Garner JM, Tam W, Kreutzer KA, Teunissen AJJM, Snijder CS, Hansen CB (1997) WO 97/33854, to DSM N.V. and E. I. Dupont de Nemours and Company

  11. Dinh PM, Howarth JA, Hudnott AR, Williams JMJ, Harris W (1996) Tetrahedron Lett 37:7623

    Article  CAS  Google Scholar 

  12. Larsson ALE, Persson BA, Bäckvall JE (1997) Angew Chem Int Ed Engl 36:1211

    Article  CAS  Google Scholar 

  13. Verzijl GKM, de Vries JG, Broxterman QB (2005) Tetrahedron Asymmetry 16:1603

    Article  CAS  Google Scholar 

  14. Verzijl GKM, de Vries JG, Broxterman QB (2001) WO 2001090396,to DSM n.v

  15. Haak RM, Berthiol F, Jerphagnon T, Gayet AJA, Tarabiono C, Postema CP, Ritleng V, Pfeffer M, Janssen DB, Minnaard AJ, Feringa BL, de Vries JG (2008) J Am Chem Soc 130:13508

    Article  CAS  Google Scholar 

  16. de Vries JG, de Vries AHM (2003) Eur J Org Chem 799

  17. van den Berg M, Minnaard AJ, Schudde EP, van Esch J, de Vries AHM, de Vries JG, Feringa BL (2000) J Am Chem Soc 122:11539

    Article  Google Scholar 

  18. Minnaard AJ, Feringa BL, Lefort L, de Vries JG (2007) Acc Chem Res 40:1267

    Article  CAS  Google Scholar 

  19. Reetz MT, Mehler G (2000) Angew Chem Int Ed 39:3889

    Article  CAS  Google Scholar 

  20. Claver C, Fernandez E, Gillon A, Heslop K, Hyett DJ, Martorell A, Orpen AG, Pringle PG (2000) Chem Commun 961

  21. Lefort L, Boogers JAF, de Vries AHM, de Vries JG (2004) Org Lett 6:1733

    Article  CAS  Google Scholar 

  22. Gennari G, Monti C, Piarulli U, de Vries JG, de Vries AHM, Lefort L (2005) Chem Eur J 11:6701

    Article  Google Scholar 

  23. Peña D, Minnaard AJ, Boogers JAF, de Vries AHM, de Vries JG, Feringa BL (2003) Org Biomol Chem 1:1087

    Article  Google Scholar 

  24. Hoen R, Boogers JAF, Bernsmann H, Minnaard AJ, Meetsma A, Tiemersma-Wegman TD, de Vries AHM, de Vries JG, Feringa BL (2005) Angew Chem Int Ed 44:4209

    Article  CAS  Google Scholar 

  25. Reetz MT, Sell T, Meiswinkel A, Mehler G (2003) Angew Chem Int Ed 42:790

    Article  CAS  Google Scholar 

  26. Boogers JAF, Felfer U, Kotthaus M, Lefort L, Steinbauer G, de Vries AHM, de Vries JG (2007) Org Proc Res Dev 11:585

    Article  CAS  Google Scholar 

  27. Alberico E, Baumann W, de Vries JG, Drexler H-J, Gladiali S, Heller D, Henderickx HJW, Lefort L (2011) Chem Eur J 17:12683

    Article  CAS  Google Scholar 

  28. Tucker CE, de Vries JG (2002) Top Catal 19:111

    Article  CAS  Google Scholar 

  29. Stephan MS, Teunissen AJJM, Verzijl GKM, de Vries JG (1998) Angew Chem Int Ed Engl 37:662

    Article  CAS  Google Scholar 

  30. Gooßen LJ, Rodríguez N, Gooßen K (2008) Angew Chem Int Ed 47:3100

    Article  Google Scholar 

  31. Jeffery T (1996) Tetrahedron 52:10113

    Article  CAS  Google Scholar 

  32. de Vries AHM, Parlevliet FJ, de Schmieder-van Vondervoort L, Mommers JHM, Henderickx HJW, Walet MAN, de Vries JG (2002) Adv Synth Catal 344:996

    Article  Google Scholar 

  33. Djakovitch L, Köhler K, de Vries JG (2008) In: Astruc D (ed) Nanoparticles and catalysis. Wiley-VCH, Weinheim, p p303

    Google Scholar 

  34. de Vries JG (2006) Dalton Trans 421

  35. de Vries AHM, Mulders JMCA, Mommers JHM, Henderickx HJW, de Vries JG (2003) Org Lett 5:3285

    Article  Google Scholar 

  36. Reetz MT, de Vries JG (2004) Chem Commun 1559

  37. Alimardanov A, Schmieder-van de Vondervoort L, de Vries AHM, de Vries JG (2004) Adv Synth Catal 346:1812

  38. de Vries JG (2012) In: Beller M, Blaser HU (eds) Organometallics as catalysts in the fine chemical industry. Top Organomet Chem 42:1

  39. Plietker B (2008) Iron catalysis in organic chemistry: reactions and applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  40. Junge K, Schröder K, Beller M (2011) Chem Commun 47:4849

    Article  CAS  Google Scholar 

  41. Sun C-L, Li B-J, Shi Z-J (2011) Chem Rev 111:1293

    Article  CAS  Google Scholar 

  42. Phua PH, Lefort L, Boogers JAF, Tristany M, de Vries JG (2009) Chem Commun 3747

  43. de Lange B, Lambers-Verstappen MH, Schmieder-van de Vondervoort L, Sereinig N, de Rijk R, de Vries AHM, de Vries JG (2006) Synlett 3105

  44. de Lange B, Hyett DJ, Maas PJD, Mink D, van Assema FBJ, Sereinig N, de Vries AHM, de Vries JG (2011) ChemCatChem 3:289

    Article  Google Scholar 

  45. van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Chem Rev 113:1499

    Article  Google Scholar 

  46. Gruter GJM, Dautzenberg F (2007) WO 2007/104514,to Avantium International b.v

  47. Mascal M, Nikitin EB (2008) Angew Chem Int 47:7924

    Article  CAS  Google Scholar 

  48. Koso S, Furikado I, Shimao A, Miyazawa T, Kunimori K, Tomishige K (2009) Chem Commun 2035

  49. Buntara T, Melián-Cabrera I, Tan Q, Fierro JLG, Neurock M, de Vries JG, Heeres HJ (2013) Catal Today 210:106

    Article  CAS  Google Scholar 

  50. Buntara T, Noel S, Phua PH, Melián-Cabrera I, de Vries JG, Heeres HJ (2012) Top Catal 55:612

    Article  CAS  Google Scholar 

  51. Murahashi SI, Naota T, Ito K, Maeda Y, Taki H (1987) J Org Chem 52:4319

    Article  CAS  Google Scholar 

  52. Nicklaus CM, Phua PH, Buntara T, Noel S, Heeres HJ, de Vries JG (2013) Adv Synth Catal 355:2839

    Article  CAS  Google Scholar 

  53. Buntara T, Noel S, Phua PH, Melián-Cabrera I, de Vries JG, Heeres HJ (2011) Angew Chem Int Ed 50:7083

    Article  CAS  Google Scholar 

  54. Hayes DJ, Fitzpatrick SW, Hayes MHB, Ross JRH (2006) In: Kamm B, Gruber PR, Kamm M (eds) Biorefineries-industrial processes and products: status quo and future directions, vol 1. Wiley, Weinheim, pp 139–163

    Google Scholar 

  55. Raspolli Galletti AM, Antonetti C, De Luise V, Licursi D, Nassi o Di Nasso N (2012) Biores 7:1824

  56. Wright WRH, Palkovits R (2012) ChemSusChem 5:1657

    Article  CAS  Google Scholar 

  57. Castelijns AMCF, Janssen MCC, Vaessen HWLM (2012) WO2012/175439 to DSM IP Assets b.v

  58. Castelijns AMCF (2013) WO2013/092408 to DSM IP Assets b.v

  59. Drent E, Jager WW (2001) WO01/68583 to Shell Internationale Research Maatschappij b.v

  60. Jiménez-Rodriguez C, Eastham GR, Cole-Hamilton DJ (2005) Inorg Chem Commun 8:878

    Article  Google Scholar 

  61. Clegg W, Eastham GR, Elsegood MRJ, Tooze RP, Wang XL, Whiston K (1999) Chem Commun 1877

  62. de Vries JG, Sereinig N, van de Vondervoort EWM, Janssen MCC (2012) WO2012/131028 to DSM IP Assets b.v

Download references

Acknowledgments

The work described in this account has been a team effort both at DSM Innovative Synthesis BV as well as at the University of Groningen. I thank everyone for the exciting, wonderful and pleasant collaborations. I do not dare to list their names for fear of missing someone. Instead their names are listed in the references. Furthermore, I thank all the other collaborators from other universities inside and outside the Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes G. de Vries.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Vries, J.G. Twenty-Five Years of Homogeneous Catalysis for the Production of Bulk and Fine Chemicals: A Personal Account. Top Catal 57, 1306–1317 (2014). https://doi.org/10.1007/s11244-014-0297-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-014-0297-1

Keywords

Navigation