Skip to main content

Advertisement

Log in

New Copper Complex on Fe3O4 Nanoparticles as a Highly Efficient Reusable Nanocatalyst for Synthesis of Polyhydroquinolines in Water

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, we present a simple, environmentally friendly and economical route for the preparation of a novel copper-Schiff-base organometallic complex on Fe3O4 nanoparticles (Fe3O4@Schiff-base-Cu) using an inexpensive and simple method and available materials. This magnetic nanocatalyst was comprehensively characterized using Fourier transform infrared spectroscopy (FT-IR), X-Ray Diffractometer (XRD), inductively coupled plasma atomic emission spectroscopy (ICP), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), X-ray mapping, thermogravimetric analysis (TGA) and vibrating sample magnetometer (VSM) analysis. In the second stage, the catalytic activity of this catalyst was studied in the synthesis of polyhydroquinoline derivatives via Hantzsch reaction in water as a green solvent. In this sense, simple preparation of the catalyst from the commercially available materials, high catalytic activity, simple operation, short reaction times, high yields and use of green solvent can be regarded as some advantages of this protocol. In addition, it is worth mentioning that this nanocatalyst was easily recovered using external magnet and reused for several times without significant loss of its catalytic efficiency. Finally, the leaching, heterogeneity and stability of Fe3O4@Schiff-base-Cu were studied by hot filtration test and ICP technique.

Graphic Abstract

A green and novel Fe3O4@Schiff-base-Cu catalyst sucssesfully was prepared and characterized. This catalyst can be used for the Synthesis of polyhydroquinolines in water as the green solvent. This catalyst could be recovered easily and reused many times without important decrease in efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Scheme 3
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jamale DK, Undare SS, Valekar NJ et al (2019) Glycerol mediated synthesis, biological evaluation, and molecular docking study of 4-(1H-pyrazol-4-yl)-polyhydroquinolines as potent antitubercular agents. J Heterocycl Chem 56:608–618. https://doi.org/10.1002/jhet.3438

    Article  CAS  Google Scholar 

  2. Saghanezhad SJ, Sayahi MH, Imanifar I et al (2017) Caffeine-H3PO4: a novel acidic catalyst for various one-pot multicomponent reactions. Res Chem Intermed 43:6521–6536

    Article  CAS  Google Scholar 

  3. Ahankar H, Ramazani A, Joo SW (2016) Magnetic nickel ferrite nanoparticles as an efficient catalyst for the preparation of polyhydroquinoline derivatives under microwave irradiation in solvent-free conditions. Res Chem Intermed 42:2487–2500. https://doi.org/10.1007/s11164-015-2163-6

    Article  CAS  Google Scholar 

  4. Jadhvar SC, Kasraliker HM, Goswami SV et al (2017) One-pot synthesis and evaluation of anticancer activity of polyhydroquinoline derivatives catalyzed by [Msim]Cl. Res Chem Intermed 43:7211–7221. https://doi.org/10.1007/s11164-017-3069-2

    Article  CAS  Google Scholar 

  5. Gong G-H, Bian M, Liu C-Y, Zhang B (2019) Heterocyclic pyran and polyhydroquinoline derivatives to inhibit human breast cancer cells. Main Gr Chem 18:15–22. https://doi.org/10.3233/MGC-180676

    Article  CAS  Google Scholar 

  6. Laughlin TJ, Yoo JS, Mohan RS (2017) Synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones/thiones and polyhydroquinolines via multicomponent reactions. multicomponent reactions. CRC Press, Boca Raton, pp 369–378

    Google Scholar 

  7. Amoli T, Baghbanian SM (2018) Poly(vinylimidazolum acetic acid)-entrapped nanozeolite: efficient heterogeneous catalyst for synthesis of polyhydroquinolines and 1,4-dihydropyridines. Res Chem Intermed 44:3389–3405

    Article  CAS  Google Scholar 

  8. Mohammadi Ziarani G, Seyedakbari L, Asadi S et al (2016) Ionic liquid supported nanoporous silica (SBA-IL) as an efficient and heterogeneous catalyst in the domino synthesis of polyhydroquinoline derivatives. Res Chem Intermed 42:499–509

    Article  CAS  Google Scholar 

  9. El-Saghier AM, Abd El-Halim HF, Abdel-Rahman LH, Kadry A (2019) Green synthesis of new trizole based heterocyclic amino acids ligands and their transition metal complexes. Characterization, kinetics, antimicrobial and docking studies. Appl Organomet Chem. https://doi.org/10.1002/aoc.4641

    Article  Google Scholar 

  10. Zhang G, Liu B, Zhou H et al (2018) Graphene wrapped phthalocyanine: enhanced oxidative desulfurization for dibenzothiophene in fuel. Appl Organomet Chem. https://doi.org/10.1002/aoc.4477

    Article  Google Scholar 

  11. Alinezhad H, Mohseni Tavakkoli S (2015) Cu-doped ZnO nanocrystalline powder as a catalyst for green and convenient multi-component synthesis of 1,4-dihydropyridine. Res Chem Intermed 41:5931–5940. https://doi.org/10.1007/s11164-014-1712-8

    Article  CAS  Google Scholar 

  12. Vahdat SM (2013) Cu(2) schiff base complex as a highly efficient catalyst for the synthesis of polyhydroquinoline derivatives via hantzsch condensation in water. Comb Chem High Throughput Screen 16:782–787. https://doi.org/10.2174/13862073113169990003

    Article  CAS  PubMed  Google Scholar 

  13. Taghavi Fardood S, Ramazani A, Golfar Z, Joo SW (2017) Green synthesis of Ni-Cu-Zn ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. Appl Organomet Chem. https://doi.org/10.1002/aoc.3823

    Article  Google Scholar 

  14. Tamoradi T, Ghadermazi M, Ghorbani-Choghamarani A (2018) Synthesis of polyhydroquinoline, 2,3-dihydroquinazolin-4(1H)-one, sulfide and sulfoxide derivatives catalyzed by new copper complex supported on MCM-41. Catal Lett 148:857–872. https://doi.org/10.1007/s10562-018-2311-x

    Article  CAS  Google Scholar 

  15. Ghorbani-Choghamarani A, Tahmasbi B, Moradi P, Havasi N (2016) Cu–S-(propyl)-2-aminobenzothioate on magnetic nanoparticles: highly efficient and reusable catalyst for synthesis of polyhydroquinoline derivatives and oxidation of sulfides. Appl Organomet Chem 30:619–625. https://doi.org/10.1002/aoc.3478

    Article  CAS  Google Scholar 

  16. Mansoor SS, Aswin K, Logaiya K et al (2014) Silica-supported perchloric acid (HClO4-SiO2): a mild, reusable and highly efficient heterogeneous catalyst for multicomponent synthesis of 1,4-dihydropyridines via unsymmetrical Hantzsch reaction. Res Chem Intermed 40:357–369. https://doi.org/10.1007/s11164-012-0968-0

    Article  CAS  Google Scholar 

  17. Anbia M, Aghadoukht F (2019) Functionalization of silicon nanowires by iron oxide and copper for degradation of phenol. Res Chem Intermed 45:1973–1984

    Article  CAS  Google Scholar 

  18. Sayahi MH, Bahadorikhalili S, Saghanezhad SJ, Mahdavi M (2018) Copper (II)-supported polyethylenimine-functionalized magnetic graphene oxide as a catalyst for the green synthesis of 2-arylquinazolin-4(3H)-ones. Res Chem Intermed 44:5241–5253

    Article  CAS  Google Scholar 

  19. Padmaja RD, Meena DR, Maiti B, Chanda K (2017) [Cu(phen)(PPh3)2]NO3-catalyzed microwave-assisted green synthesis of 5-substituted 1H-tetrazoles. Res Chem Intermed 43:7365–7374

    Article  CAS  Google Scholar 

  20. Danopoulos AA, Simler T, Braunstein P (2019) N-heterocyclic carbene complexes of copper, nickel, and cobalt. Chem Rev 119:3730–3961. https://doi.org/10.1021/acs.chemrev.8b00505

    Article  CAS  PubMed  Google Scholar 

  21. Mandal S, Mandal S, Biswas S et al (2018) Synthesis of 2-(ethynyloxy)naphthaene-1-carbaldehyde using 2-hydroxy benzyl alcohol and propargyl bromide in aqueous micellar media. Res Chem Intermed 44:2169–2177

    Article  CAS  Google Scholar 

  22. Kobayashi Y, Yasuda Y, Morita T (2016) Recent advances in the synthesis of copper-based nanoparticles for metal–metal bonding processes. J Sci Adv Mater Dev 1:413–430. https://doi.org/10.1016/j.jsamd.2016.11.002

    Article  Google Scholar 

  23. Yang Z, Dong A, Chen H (2017) Cu/zeolite catalysts for the photocatalytic decomposition and selective catalytic reduction of NOx. Res Chem Intermed 43:5245–5259

    Article  CAS  Google Scholar 

  24. Chen L, Noory Fajer A, Yessimbekov Z et al (2019) Diaryl sulfides synthesis: copper catalysts in C-S bond formation. J Sulfur Chem 40:451–468. https://doi.org/10.1080/17415993.2019.1596268

    Article  CAS  Google Scholar 

  25. Schlichter S, Rocha M, Peixoto AF et al (2018) Copper mesoporous materials as highly efficient recyclable catalysts for the reduction of 4-nitrophenol in aqueous media. Polyhedron 150:69–76. https://doi.org/10.1016/j.poly.2018.04.037

    Article  CAS  Google Scholar 

  26. Hajipour AR, Fakhari F, Bidhendi GN (2019) Copper nanoparticles supported on 2-methoxy-1-phenylethanone-functionalized MCM-41: an efficient and recyclable catalyst for one-pot three-component C-S coupling reaction of aryl halides with benzyl bromide and thiourea. Appl Organomet Chem. https://doi.org/10.1002/aoc.4853

    Article  Google Scholar 

  27. Tamoradi T, Ghorbani-Choghamarani A, Ghadermazi M, Veisi H (2019) SBA-15@Glycine-M (M = Ni and Cu): two green, novel and efficient catalysts for the one-pot synthesis of 5-substituted tetrazole and polyhydroquinoline derivatives. Solid State Sci 91:96–107. https://doi.org/10.1016/j.solidstatesciences.2019.03.020

    Article  CAS  Google Scholar 

  28. Wang J, Zhou Y, Shao Y et al (2019) Chitosan–silica nanoparticles catalyst (M@CS–SiO 2) for the degradation of 1,1-dimethylhydrazine. Res Chem Intermed 45:1721–1735

    Article  CAS  Google Scholar 

  29. Fodor A, Hell Z, Pirault-Roy L (2014) Copper(II)- and palladium(II)-modified molecular sieve, a reusable catalyst for the Suzuki-Miyaura-coupling. Appl Catal A 484:39–50. https://doi.org/10.1016/j.apcata.2014.07.002

    Article  CAS  Google Scholar 

  30. Liu QX, Zhao DX, Wu H et al (2018) Catalytic activities of NHC-PdCl 2 species based on functionalized tetradentate imidazolium salt in three types of C-C coupling reactions. Appl Organomet Chem. https://doi.org/10.1002/aoc.4429

    Article  Google Scholar 

  31. Rezvani MA, Aghbolagh ZS, Monfared HH (2018) Green and efficient organic–inorganic hybrid nanocatalyst for oxidative desulfurization of gasoline. Appl Organomet Chem. https://doi.org/10.1002/aoc.4592

    Article  Google Scholar 

  32. Hoffmann F, Cornelius M, Morell J, Fröba M (2006) Silica-based mesoporous organic–inorganic hybrid materials. Angew Chem Int Ed 45:3216–3251

    Article  CAS  Google Scholar 

  33. Aryan R, Beyzaei H, Nojavan M, Dianatipour T (2016) Secondary amines immobilized inside magnetic mesoporous materials as a recyclable basic and oxidative heterogeneous nanocatalyst for the synthesis of trisubstituted pyrimidine derivatives. Res Chem Intermed 42:4417–4431

    Article  CAS  Google Scholar 

  34. Lashgari N, Badiei A, Ziarani GM (2016) Modification of mesoporous silica SBA-15 with different organic molecules to gain chemical sensors: a review organic molecules and its role. Nano Chem Res 1:127–141. https://doi.org/10.7508/ncr.2016.01.014

    Article  CAS  Google Scholar 

  35. Liu H, Wei L, Liu F et al (2019) Homogeneous, heterogeneous, and biological catalysts for electrochemical N2 reduction toward NH3 under ambient conditions. ACS Catal. https://doi.org/10.1021/acscatal.9b00994

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yin Q, Zhu Y, Ju S et al (2016) Rapid determination of copper and lead in Panax notoginseng by magnetic solid-phase extraction and flame atomic absorption spectrometry. Res Chem Intermed 42:4985–4998

    Article  CAS  Google Scholar 

  37. Pradhan N, Singh S, Ojha N et al (2015) Facets of nanotechnology as seen in food processing, packaging, and preservation industry. Biomed Res Int. https://doi.org/10.1155/2015/365672

    Article  PubMed  PubMed Central  Google Scholar 

  38. Esmaeili-Zare M, Salavati-Niasari M (2015) Synthesis, characterization, and photoluminescence properties of HgSe nanoparticles using a novel mercury precursor by the sonochemical method. Res Chem Intermed 41:8185–8198

    Article  CAS  Google Scholar 

  39. Jenita Rani G, Jothi Rajan MA, Gnana kumar G (2017) Reduced graphene oxide/ZnFe2O4 nanocomposite as an efficient catalyst for the photocatalytic degradation of methylene blue dye. Res Chem Intermed 43:2669–2690

    Article  CAS  Google Scholar 

  40. Surynek M, Spanhel L, Lapcik L, Mrazek J (2019) Tuning the photocatalytic properties of sol–gel-derived single, coupled, and alloyed ZnO–TiO2 nanoparticles. Res Chem Intermed. https://doi.org/10.1007/s11164-019-03900-6

    Article  Google Scholar 

  41. Zhao Y, Zhao N, Zou M et al (2016) Highly ordered amphiphilic cyclopalladated arylimine self-assembly films for catalyzing Heck and Suzuki coupling reactions. Appl Organomet Chem 30:540–549. https://doi.org/10.1002/aoc.3467

    Article  CAS  Google Scholar 

  42. Nosrati H, Salehiabar M, Davaran S et al (2017) New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs). Res Chem Intermed 43:7423–7442

    Article  CAS  Google Scholar 

  43. Olad A, Rezvani F, Nosrati R (2018) Preparation and characterization of polyurethane based self-cleaning and antibacterial coating containing silver ion exchanged montmorillonite/TiO2 nanocomposite. Res Chem Intermed 44:1711–1727

    Article  CAS  Google Scholar 

  44. Razmara Z (2019) Lanthanum(III) complex as ferromagnetic supraprecursor for preparation of La2O3 nanoparticles by thermal decomposition method. Res Chem Intermed 45:2887–2901

    Article  CAS  Google Scholar 

  45. Rostami M, Aghajanzadeh M, Zamani M et al (2018) Sono-chemical synthesis and characterization of Fe3O4@mTiO2-GO nanocarriers for dual-targeted colon drug delivery. Res Chem Intermed 44:1889–1904

    Article  CAS  Google Scholar 

  46. Kiš E, Marinković-Nedučin R, Lomić G et al (1998) Structural and textural properties of the NiO-Al2O3 catalyst. Polyhedron 17:27–34. https://doi.org/10.1016/S0277-5387(97)00263-5

    Article  Google Scholar 

  47. Ludvíková J, Jabłońska M, Jirátová K et al (2016) Co-Mn-Al mixed oxides as catalysts for ammonia oxidation to N2O. Res Chem Intermed 42:2669–2690

    Article  Google Scholar 

  48. Rafiee E, Khodayari M (2016) Starch as a green source for Fe3O4@carbon core-shell nanoparticles synthesis: a support for 12-tungstophosphoric acid, synthesis, characterization, and application as an efficient catalyst. Res Chem Intermed 42:3523–3536

    Article  CAS  Google Scholar 

  49. Azizi N, Farhadi E (2018) Magnetically separable g-C3N4 hybrid nanocomposite: highly efficient and eco-friendly recyclable catalyst for one-pot synthesis of α-aminonitriles. Appl Organomet Chem. https://doi.org/10.1002/aoc.4188

    Article  Google Scholar 

  50. Aghayee M, Zolfigol MA, Keypour H et al (2016) Synthesis and characterization of a novel magnetic nano-palladium Schiff base complex: application in cross-coupling reactions. Appl Organomet Chem 30:612–618. https://doi.org/10.1002/aoc.3477

    Article  CAS  Google Scholar 

  51. Rakhtshah J, Salehzadeh S, Zolfigol MA, Baghery S (2017) Synthesis, characterization and heterogeneous catalytic application of a nickel(II) Schiff base complex immobilized on MWCNTs for the Hantzsch four-component condensation. J Coord Chem 70:340–360. https://doi.org/10.1080/00958972.2016.1253068

    Article  CAS  Google Scholar 

  52. Kiyani H, Ghiasi M (2015) Solvent-free efficient one-pot synthesis of Biginelli and Hantzsch compounds catalyzed by potassium phthalimide as a green and reusable organocatalyst. Res Chem Intermed 41:5177–5203. https://doi.org/10.1007/s11164-014-1621-x

    Article  CAS  Google Scholar 

  53. Zolfigol MA, Bahrami-Nejad N, Baghery S (2016) A convenient method for the synthesis of 1,8-dioxodecahydroacridine derivatives using 1-methylimidazolium tricyanomethanide [HMIM]C(CN)3 as a nanostructured molten salt catalyst. J Mol Liq 218:558–564. https://doi.org/10.1016/j.molliq.2016.03.006

    Article  CAS  Google Scholar 

  54. Rakhtshah J, Salehzadeh S, Gowdini E et al (2016) Synthesis of pyrazole derivatives in the presence of a dioxomolybdenum complex supported on silica-coated magnetite nanoparticles as an efficient and easily recyclable catalyst. RSC Adv 6:104875–104885. https://doi.org/10.1039/c6ra20988b

    Article  CAS  Google Scholar 

  55. Atashkar B, Zolfigol MA, Mallakpour S (2018) Applications of biological urea-based catalysts in chemical processes. Mol Catal 452:192–246. https://doi.org/10.1016/j.mcat.2018.03.009

    Article  CAS  Google Scholar 

  56. Khazaei A, Zolfigol MA, Abedian N (2001) A novel synthesis and characterization of poly[4-imino(n-4-ethylbenzoate)benzene p-styrenesulphonate] and the investigation on polymer ability for drug release. Iran Polym J 10:59–65

    CAS  Google Scholar 

  57. Lashanizadegan M, Zareian Z (2011) Homogenous and heterogeneous catalytic activity of Azo-linked Schiff base complexes of Mn(II), Cu(II) and Co(II). Catal Lett 141:1698–1702. https://doi.org/10.1007/s10562-011-0709-9

    Article  CAS  Google Scholar 

  58. Chen L, Li B, Liu D (2014) Schiff base complex coated Fe3O4 nanoparticles: a highly recyclable nanocatalyst for selective oxidation of alkyl aromatics. Catal Lett 144:1053–1061. https://doi.org/10.1007/s10562-014-1244-2

    Article  CAS  Google Scholar 

  59. Bhoware SS, Kamble KR, Singh AP (2009) Catalytic activity of cobalt containing MCM-41 and HMS in liquid phase oxidation of diphenylmethane. Catal Lett 133:106–111. https://doi.org/10.1007/s10562-009-0162-1

    Article  CAS  Google Scholar 

  60. Yang D, Gao L, Zhao W (2008) Synthesis, characterization and catalytic activity of dialdehyde starch-schiff base Co(II) complex in the oxidation of cyclohexane. Catal Lett 126:84–88. https://doi.org/10.1007/s10562-008-9579-1

    Article  CAS  Google Scholar 

  61. Wang X, Qiu Z, Liu Q et al (2017) Heterogeneous catalytic transfer partial-hydrogenation with formic acid as hydrogen source over the schiff-base modified gold nano-catalyst. Catal Lett 147:517–524. https://doi.org/10.1007/s10562-016-1929-9

    Article  CAS  Google Scholar 

  62. Maruyama K, Tsutsui T, Shiosaki H et al (1993) Structural requirement for catalytic activity of cobalt Schiff base complex in oxygenation of alkenes. React Kinet Catal Lett 49:1–6. https://doi.org/10.1007/BF02084021

    Article  CAS  Google Scholar 

  63. Haghshenas Kashani S, Moghadam M, Tangestaninejad S et al (2018) Ruthenium nanoparticles immobilized on nano-silica functionalized with thiol-based dendrimer: a nanocomposite material for oxidation of alcohols and epoxidation of alkenes. Catal Lett 148:1110–1123. https://doi.org/10.1007/s10562-018-2313-8

    Article  CAS  Google Scholar 

  64. Feizpour F, Jafarpour M, Rezaeifard A (2018) A tandem aerobic photocatalytic synthesis of benzimidazoles by cobalt ascorbic acid complex coated on TiO2 nanoparticles under visible light. Catal Lett 148:30–40. https://doi.org/10.1007/s10562-017-2232-0

    Article  CAS  Google Scholar 

  65. Mirjalili BBF, Soltani R (2019) Nano-kaolin/Ti 4 +/Fe 3 O 4: a magnetic reusable nano-catalyst for the synthesis of pyrimido[2,1- b]benzothiazoles. RSC Adv 9:18720–18727. https://doi.org/10.1039/c9ra01767d

    Article  CAS  Google Scholar 

  66. Hamrahian SA, Rakhtshah J, Mousavi Davijani SM, Salehzadeh S (2018) Copper Schiff base complex immobilized on silica-coated Fe3O4 nanoparticles: a recoverable and efficient catalyst for synthesis of polysubstituted pyrroles. Appl Organomet Chem. https://doi.org/10.1002/aoc.4501

    Article  Google Scholar 

  67. Moosavi-Zare AR, Goudarziafshar H, Jalilian Z (2019) Nano-Zn[2-boromophenylsalicylaldiminemethylpyranopyrazole]Cl2 as a novel nanostructured Schiff base complex and catalyst for the synthesis of pyrano[2,3-d]pyrimidinedione derivatives. Appl Organomet Chem. https://doi.org/10.1002/aoc.4584

    Article  Google Scholar 

  68. Nikoorazm M, Ghorbani-Choghamarani A, Khanmoradi M (2016) Synthesis and characterization of Ni(II)-Vanillin-Schiff base-MCM-41 composite as an efficient and reusable nanocatalyst for multicomponent reactions. RSC Adv 6:56549–56561. https://doi.org/10.1039/c6ra09371j

    Article  CAS  Google Scholar 

  69. Karimi F, Zolfigol MA, Yarie M (2019) A novel and reusable ionically tagged nanomagnetic catalyst: application for the preparation of 2-amino-6-(2-oxo-2H-chromen-3-yl)-4-arylnicotinonitriles via vinylogous anomeric based oxidation. Mol Catal. https://doi.org/10.1016/j.mcat.2018.11.009

    Article  Google Scholar 

  70. Rakhtshah J, Salehzadeh S, Zolfigol MA, Baghery S (2017) Mn(III)–pentadentate Schiff base complex supported on multi-walled carbon nanotubes as a green, mild and heterogeneous catalyst for the synthesis of tetrahydrobenzo[b]pyrans via tandem Knoevenagel-Michael cyclocondensation reaction. Appl Organomet Chem. https://doi.org/10.1002/aoc.3690

    Article  Google Scholar 

  71. Hami Dindar M, Yaftian MR, Pilehvari M, Rostamnia S (2015) SBA-15 mesoporous materials decorated with organic ligands: use as adsorbents for heavy metal ions. J Iran Chem Soc 12:561–572. https://doi.org/10.1007/s13738-014-0513-8

    Article  CAS  Google Scholar 

  72. Jahromi EZ, Divsalar A, Saboury AA et al (2016) Palladium complexes: new candidates for anti-cancer drugs. J Iran Chem Soc 13:967–989. https://doi.org/10.1007/s13738-015-0804-8

    Article  CAS  Google Scholar 

  73. Asadi M, Mohammadi K, Kiyanfar AH (2006) Donor ligand, basal ligand and solvent effects on the equilibrium constants of triphenylphosphinecobalt(III) schiff base complexes with phosphite ligands. J Iran Chem Soc 3:247–252. https://doi.org/10.1007/BF03247215

    Article  CAS  Google Scholar 

  74. Abou-Melha KS, Faruk H (2008) Bimetallic complexes of schiff base bis-[4-hydroxycuomarin-3-yl]- 1 N,5 N-thiocarbohydrazone as a potentially dibasic pentadentate ligand. Synthesis, spectral, and antimicrobial properties. J Iran Chem Soc 5:122–134. https://doi.org/10.1007/BF03245825

    Article  CAS  Google Scholar 

  75. Khalil RA, Jalil AH, Abd-Alrazzak AY (2009) Application of a Schiff base derived from sulfanilamide as an acid-base indicator. J Iran Chem Soc 6:345–352. https://doi.org/10.1007/BF03245844

    Article  CAS  Google Scholar 

  76. Keypour H, Dehghani-Firouzabadi AA, Rezaeivala M, Goudarziafsharc H (2010) Synthesis and characterization of Cd(II) macrocyclic Schiff base complex with two 2-aminoethyl pendant arms. J Iran Chem Soc 7:820–824. https://doi.org/10.1007/BF03246074

    Article  CAS  Google Scholar 

  77. Rayati S, Shokoohi S, Bohloulbandi E (2016) Mn(II) and VO(IV) Schiff base complexes encapsulated in nanocavities of zeolite-Y: catalytic activity toward oxidation of alkenes and reduction of aldehydes. J Iran Chem Soc 13:1983–1991. https://doi.org/10.1007/s13738-016-0915-x

    Article  CAS  Google Scholar 

  78. Rajabi F (2010) Cobalt(II) schiff base functionalized mesoporous silica as an efficient and recyclable chemoselective acetalization catalyst. J Iran Chem Soc 7:695–701. https://doi.org/10.1007/BF03246059

    Article  CAS  Google Scholar 

  79. Naeimi H, Rabiei K, Rezaei M, Meshkani F (2013) Nanocrystalline magnesium oxide as a solid base catalyst promoted one pot synthesis of gem-dichloroaziridine derivatives under thermal conditions. J Iran Chem Soc 10:161–167. https://doi.org/10.1007/s13738-012-0137-9

    Article  CAS  Google Scholar 

  80. Nikoorazm M, Ghorbani-Choghamarani A, Panahi A et al (2018) Pd(0)-Schiff-base@MCM-41 as high-efficient and reusable catalyst for C-C coupling reactions. J Iran Chem Soc 15:181–189. https://doi.org/10.1007/s13738-017-1222-x

    Article  CAS  Google Scholar 

  81. Zarnegaryan A, Pahlevanneshan Z, Moghadam M et al (2019) Copper(II) Schiff base complex immobilized on graphene nanosheets: a heterogeneous catalyst for epoxidation of olefins. J Iran Chem Soc 16:747–756. https://doi.org/10.1007/s13738-018-1552-3

    Article  CAS  Google Scholar 

  82. Sedaghat T, Monajjemzadeh M (2011) Some new organotin(IV) schiff base adducts: synthesis, spectroscopic characterization and thermal studies. J Iran Chem Soc 8:477–483. https://doi.org/10.1007/BF03249081

    Article  CAS  Google Scholar 

  83. Maruyama K, Nakamura T, Nakamura S et al (1991) Cobalt schiff base complex catalysed solvolytic ring opening of epoxy compounds. React Kinet Catal Lett 45:165–171. https://doi.org/10.1007/BF02070423

    Article  CAS  Google Scholar 

  84. Yuan X, Shan G, Li L et al (2015) Methyl group modified MCM-41 supported schiff-base cobalt complex and its catalytic performance in cyclohexane oxidation. Catal Lett 145:868–874. https://doi.org/10.1007/s10562-015-1499-2

    Article  CAS  Google Scholar 

  85. Ghorbani-Choghamarani A, Derakhshan AA, Hajjami M, Rajabi L (2017) Palladium-alumoxane framework as a novel and reusable nanocatalyst for suzuki-miyaura, stille and heck cross coupling reactions. Catal Lett 147:110–127. https://doi.org/10.1007/s10562-016-1904-5

    Article  CAS  Google Scholar 

  86. Niakan M, Asadi Z (2019) Selective reduction of nitroarenes catalyzed by sustainable and reusable DNA-supported nickel nanoparticles in water at room temperature. Catal Lett. https://doi.org/10.1007/s10562-019-02741-7

    Article  Google Scholar 

  87. Mirzaee M, Bahramian B, Shahraki M et al (2018) Molybdenum containing catalysts grafted on functionalized hydrous zirconia nano-particles for epoxidation of alkenes. Catal Lett 148:3003–3017. https://doi.org/10.1007/s10562-018-2521-2

    Article  CAS  Google Scholar 

  88. Bondarenko GN, Dvurechenskaya EG, Magommedov ES, Beletskaya IP (2017) Copper(0) nanoparticles supported on Al2O3 as catalyst for carboxylation of terminal alkynes. Catal Lett 147:2570–2580. https://doi.org/10.1007/s10562-017-2127-0

    Article  CAS  Google Scholar 

  89. Liu M-Q, Weng X-Y, Wang Q et al (2017) Recombinant thermostable thermomonospora fusca TF endo-xylanase A and its immobilization on modified mesoporous SiO2 microspheres for manufacturing xylooligosaccharides. Catal Lett 147:765–772. https://doi.org/10.1007/s10562-017-1979-7

    Article  CAS  Google Scholar 

  90. Xu X, Liu P, Li S-H et al (2006) Chitosan-supported imine palladacycle complex and its catalytic performance for heck reaction. React Kinet Catal Lett 88:217–223. https://doi.org/10.1007/s11144-006-0055-x

    Article  CAS  Google Scholar 

  91. Veisi H, Azadbakht R, Saeidifar F, Abdi MR (2017) Schiff base-functionalized multi walled carbon nano tubes to immobilization of palladium nanoparticles as heterogeneous and recyclable nanocatalyst for suzuki reaction in aqueous media under mild conditions. Catal Letters 147:976–986. https://doi.org/10.1007/s10562-016-1963-7

    Article  CAS  Google Scholar 

  92. Nikoorazm M, Ghorbani F, Ghorbani-Choghamarani A, Erfani Z (2018) Pd(0)- S-propyl-2-aminobenzothioate immobilized onto functionalized magnetic nanoporous MCM-41 as efficient and recyclable nanocatalyst for the Suzuki, Stille and Heck cross coupling reactions. Appl Organomet Chem 32:1–13. https://doi.org/10.1002/aoc.4282

    Article  CAS  Google Scholar 

  93. Azarkamanzad Z, Farzaneh F, Maghami M et al (2018) Synthesis, characterization and immobilization of a novel mononuclear vanadium (V) complex on modified magnetic nanoparticles as catalyst for epoxidation of allyl alcohols. Appl Organomet Chem. https://doi.org/10.1002/aoc.4168

    Article  Google Scholar 

  94. Ma M, Yang Y, Liao D et al (2019) Synthesis, characterization and catalytic performance of core-shell structure magnetic Fe3O4/P(GMA-EGDMA)-NH2/HPG-COOH-Pd catalyst. Appl Organomet Chem 33:e4708. https://doi.org/10.1002/aoc.4708

    Article  CAS  Google Scholar 

  95. Taheri N, Heidarizadeh F, Kiasat A (2017) A new magnetically recoverable catalyst promoting the synthesis of 1,4-dihydropyridine and polyhydroquinoline derivatives via the Hantzsch condensation under solvent-free conditions. J Magn Magn Mater 428:481–487. https://doi.org/10.1016/j.jmmm.2016.09.099

    Article  CAS  Google Scholar 

  96. Sarkheil M, Lashanizadegan M (2018) New magnetic supported hydrazone Schiff base dioxomolybdenum (VI) complex: an efficient nanocatalyst for epoxidation of cyclooctene and norbornene. Appl Organomet Chem. https://doi.org/10.1002/aoc.4459

    Article  Google Scholar 

  97. Karami K, Jamshidian N, Nikazma MM et al (2018) Hiyama cross-coupling reaction using Pd(II) nanocatalyst immobilized on the surface of Fe3O4@SiO2. Appl Organomet Chem. https://doi.org/10.1002/aoc.3978

    Article  Google Scholar 

  98. Sharbatdaran M, Farzaneh F, Larijani MM et al (2016) Synthesis, characterization, DFT studies, and immobilization of cobalt(II) complex with N, N′, N″ -tris(2-pyrimidinyl)dimethylentriamine on modified iron oxide as oxidation catalyst. Polyhedron 115:264–275. https://doi.org/10.1016/j.poly.2016.05.023

    Article  CAS  Google Scholar 

  99. Nikoorazm M, Ghorbani F, Ghorbani-Choghamarani A, Erfani Z (2018) Nickel Schiff base complex anchored on Fe3O4@MCM-41 as a novel and reusable magnetic nanocatalyst and its application in the oxidation of sulfides and oxidative coupling of thiols using H2O2. Phosphorus Sulfur Silicon Relat Elem 193:552–561. https://doi.org/10.1080/10426507.2018.1455200

    Article  CAS  Google Scholar 

  100. Veisi H, Rashtiani A, Rostami A et al (2019) Chemo-selective oxidation of sulfide to sulfoxides with H2O2 catalyzed by oxo-vanadium/Schiff-base complex immobilized on modified magnetic Fe3O4 nanoparticles as a heterogeneous and recyclable nanocatalyst. Polyhedron 157:358–366. https://doi.org/10.1016/j.poly.2018.09.034

    Article  CAS  Google Scholar 

  101. Ghorbani-Choghamarani A, Mohammadi M, Hudson RHE, Tamoradi T (2019) Boehmite@tryptophan-Pd nanoparticles: a new catalyst for C-C bond formation. Appl Organomet Chem 33:e4977. https://doi.org/10.1002/aoc.4977

    Article  CAS  Google Scholar 

  102. Mirzaee M, Bahramian B, Gholampour P et al (2019) Preparation and characterization of Fe3O4 @Boehmite core-shell nanoparticles to support molybdenum or vanadium complexes for catalytic epoxidation of alkenes. Appl Organomet Chem 33:e4792. https://doi.org/10.1002/aoc.4792

    Article  CAS  Google Scholar 

  103. Ghorbani-Choghamarani A, Rabiei H, Tahmasbi B et al (2016) Preparation of DSA@MNPs and application as heterogeneous and recyclable nanocatalyst for oxidation of sulfides and oxidative coupling of thiols. Res Chem Intermed 42:5723–5737

    Article  CAS  Google Scholar 

  104. Mohammadi K, Shirini F, Yahyazadeh A (2016) 1, 3-Disulfonic acid imidazolium hydrogen sulphate as an efficient and reusable ionic liquid for the multicomponent synthesis of polyhydroquinoline derivatives under solvent-free conditions. Res Chem Intermed 42:2047–2054. https://doi.org/10.1007/s11164-015-2134-y

    Article  CAS  Google Scholar 

  105. Tamoradi T, Ghadermazi M, Ghorbani-Choghamarani A (2018) Synthesis of polyhydroquinoline, 2,3-dihydroquinazolin-4(1H)-one, sulfide and sulfoxide derivatives catalyzed by new copper complex supported on MCM-41. Catal Letters 148:857–872. https://doi.org/10.1007/s10562-018-2311-x

    Article  CAS  Google Scholar 

  106. Ghorbani-Choghamarani A, Mohammadi M, Tamoradi T, Ghadermazi M (2019) Covalent immobilization of Co complex on the surface of SBA-15: green, novel and efficient catalyst for the oxidation of sulfides and synthesis of polyhydroquinoline derivatives in green condition. Polyhedron 158:25–35. https://doi.org/10.1016/j.poly.2018.10.054

    Article  CAS  Google Scholar 

  107. Surasani R, Kalita D, Rao AVD et al (2012) FeF 3 as a novel catalyst for the synthesis of polyhydroquinoline derivatives via unsymmetrical Hantzsch reaction. J Fluor Chem 135:91–96. https://doi.org/10.1016/j.jfluchem.2011.09.005

    Article  CAS  Google Scholar 

  108. Yarie M, Zolfigol MA, Bayat Y et al (2016) Novel magnetic nanoparticles with ionic liquid tags as a reusable catalyst in the synthesis of polyhydroquinolines. RSC Adv 6:82842–82853. https://doi.org/10.1039/c6ra16459e

    Article  CAS  Google Scholar 

  109. Ghorbani-Choghamarani A, Mohammadi M, Shiri L, Taherinia Z (2019) Synthesis and characterization of spinel FeAl2O4 (hercynite) magnetic nanoparticles and their application in multicomponent reactions. Res Chem Intermed (Article inpress). https://doi.org/10.1007/s11164-019-03930-0

    Article  Google Scholar 

  110. Nasr-Esfahani M, Hoseini SJ, Montazerozohori M et al (2014) Magnetic Fe3O4 nanoparticles: efficient and recoverable nanocatalyst for the synthesis of polyhydroquinolines and Hantzsch 1,4-dihydropyridines under solvent-free conditions. J Mol Catal A 382:99–105. https://doi.org/10.1016/j.molcata.2013.11.010

    Article  CAS  Google Scholar 

  111. Khashi M, Allameh S, Beyramabadi SA et al (2017) BiFeo3 magnetic nanoparticles: a novel, efficient and reusable magnetic catalyst for the synthesis of polyhydroquinoline derivatives. Iran J Chem Chem Eng 36:45–52

    CAS  Google Scholar 

  112. Igder S, Kiasat AR, Shushizadeh MR (2015) Melamine supported on hydroxyapatite-encapsulated-γ-Fe2O3: a novel superparamagnetic recyclable basic nanocatalyst for the synthesis of 1,4-dihydropyridines and polyhydroquinolines. Res Chem Intermed 41:7227–7244. https://doi.org/10.1007/s11164-014-1808-1

    Article  CAS  Google Scholar 

  113. Ghorbani-Choghamarani A, Tahmasbi B, Moradi P, Havasi N (2016) Cu- S -(propyl)-2-aminobenzothioate on magnetic nanoparticles: highly efficient and reusable catalyst for synthesis of polyhydroquinoline derivatives and oxidation of sulfides. Appl Organomet Chem 30:619–625. https://doi.org/10.1002/aoc.3478

    Article  CAS  Google Scholar 

  114. Ghorbani-Choghamarani A, Tahmasbi B, Moradi Z (2017) S-Benzylisothiourea complex of palladium on magnetic nanoparticles: a highly efficient and reusable nanocatalyst for synthesis of polyhydroquinolines and Suzuki reaction. Appl Organomet Chem 31:e3665. https://doi.org/10.1002/aoc.3665

    Article  CAS  Google Scholar 

  115. Tamoradi T, Ghadermazi M, Ghorbani-Choghamarani A (2018) Ni(II)-Adenine complex coated Fe 3 O 4 nanoparticles as high reusable nanocatalyst for the synthesis of polyhydroquinoline derivatives and oxidation reactions. Appl Organomet Chem 32:e3974. https://doi.org/10.1002/aoc.3974

    Article  CAS  Google Scholar 

  116. Maleki A, Eskandarpour V, Rahimi J, Hamidi N (2019) Cellulose matrix embedded copper decorated magnetic bionanocomposite as a green catalyst in the synthesis of dihydropyridines and polyhydroquinolines. Carbohydr Polym 208:251–260. https://doi.org/10.1016/j.carbpol.2018.12.069

    Article  CAS  PubMed  Google Scholar 

  117. Chen Y, Zhang Z, Jiang W et al (2019) RuIII@CMC/Fe3O4 hybrid: an efficient, magnetic, retrievable, self-organized nanocatalyst for green synthesis of pyranopyrazole and polyhydroquinoline derivatives. Mol Divers 23:421–442. https://doi.org/10.1007/s11030-018-9887-3

    Article  CAS  PubMed  Google Scholar 

  118. Ghorbani-Choghamarani A, Azadi G (2015) Synthesis, characterization, and application of Fe3O4-SA-PPCA as a novel nanomagnetic reusable catalyst for the efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones and polyhydroquinolines. RSC Adv 5:9752–9758. https://doi.org/10.1039/c4ra15315d

    Article  CAS  Google Scholar 

  119. Amoozadeh A, Golian S, Rahmani S (2015) TiO2-coated magnetite nanoparticle-supported sulfonic acid as a new, efficient, magnetically separable and reusable heterogeneous solid acid catalyst for multicomponent reactions. RSC Adv 5:45974–45982. https://doi.org/10.1039/c5ra06515a

    Article  CAS  Google Scholar 

  120. Hajjami M, Tahmasbi B (2015) Synthesis and characterization of glucosulfonic acid supported on Fe 3 O 4 nanoparticles as a novel and magnetically recoverable nanocatalyst and its application in the synthesis of polyhydroquinoline and 2,3-dihydroquinazolin-4(1H)-one derivatives. RSC Adv 5:59194–59203. https://doi.org/10.1039/c5ra08952b

    Article  CAS  Google Scholar 

  121. Tabrizian E, Amoozadeh A (2016) A new type of SO3H-functionalized magnetic-titania as a robust magnetically-recoverable solid acid nanocatalyst for multi-component reactions. RSC Adv 6:96606–96615. https://doi.org/10.1039/c6ra21048a

    Article  CAS  Google Scholar 

  122. Maleki A, Akbarzade AR, Bhat AR (2017) Green synthesis of polyhydroquinolines via MCR using Fe3O4/SiO2-OSO3H nanostructure catalyst and prediction of their pharmacological and biological activities by PASS. J Nanostruct Chem 7:309–316. https://doi.org/10.1007/s40097-017-0240-7

    Article  CAS  Google Scholar 

  123. Azizi M, Maleki A, Hakimpoor F et al (2018) Green Approach for Highly Efficient Synthesis of Polyhydroquinolines Using Fe3O4@PEO-SO3H as a Novel and Recoverable Magnetic Nanocomposite Catalyst. Lett Org Chem 15:753–759

    Article  CAS  Google Scholar 

  124. Hashemi-Uderji S, Abdollahi-Alibeik M, Ranjbar-Karimi R (2019) Fe3O4@FSM-16-SO 3 H as a novel magnetically recoverable nanostructured catalyst: preparation, characterization and catalytic application. J Porous Mater 26:467–480. https://doi.org/10.1007/s10934-018-0628-x

    Article  CAS  Google Scholar 

  125. Alinezhad H, Tarahomi M, Maleki B, Amiri A (2019) SO 3 H-functionalized nano-MGO-D-NH 2: synthesis, characterization and application for one-pot synthesis of pyrano[2,3-d]pyrimidinone and tetrahydrobenzo[b]pyran derivatives in aqueous media. Appl Organomet Chem. https://doi.org/10.1002/aoc.4661

    Article  Google Scholar 

  126. Hajjami M, Gholamian F (2016) Tribromide ion immobilized on magnetic nanoparticle as a new, efficient and reusable nanocatalyst in multicomponent reactions. RSC Adv 6:87950–87960. https://doi.org/10.1039/c6ra15474c

    Article  CAS  Google Scholar 

  127. Zolfigol MA, Yarie M (2015) Synthesis and characterization of novel silica-coated magnetic nanoparticles with tags of ionic liquid. Application in the synthesis of polyhydroquinolines. RSC Adv 5:103617–103624. https://doi.org/10.1039/C5RA23670C

    Article  CAS  Google Scholar 

  128. Zolfigol MA, Ghaderi H, Baghery S, Mohammadi L (2017) Nanometasilica disulfuric acid (NMSDSA) and nanometasilica monosulfuric acid sodium salt (NMSMSA) as two novel nanostructured catalysts: applications in the synthesis of Biginelli-type, polyhydroquinoline and 2,3-dihydroquinazolin-4(1H)-one derivatives. J Iran Chem Soc 14:121–134. https://doi.org/10.1007/s13738-016-0964-1

    Article  CAS  Google Scholar 

  129. Zhang Q, Ma XM, Wei HX et al (2017) Covalently anchored tertiary amine functionalized ionic liquid on silica coated nano-Fe 3 O 4 as a novel, efficient and magnetically recoverable catalyst for the unsymmetrical Hantzsch reaction and Knoevenagel condensation. RSC Adv 7:53861–53870. https://doi.org/10.1039/c7ra10692k

    Article  CAS  Google Scholar 

  130. Kardooni R, Kiasat AR, Motamedi H (2017) Designing of a novel dual-function silica-iron oxide hybrid based nanocomposite, Fe3O4@SiO2[sbnd]PEG/NH2, and its application as an eco-catalyst for the solvent-free synthesis of polyhydroacridines and polyhydroquinolines. J Taiwan Inst Chem Eng 81:373–382. https://doi.org/10.1016/j.jtice.2017.10.013

    Article  CAS  Google Scholar 

  131. Maleki A, Hamidi N, Maleki S, Rahimi J (2018) Surface modified SPIONs-Cr(VI) ions-immobilized organic-inorganic hybrid as a magnetically recyclable nanocatalyst for rapid synthesis of polyhydroquinolines under solvent-free conditions at room temperature. Appl Organomet Chem 32:e4245. https://doi.org/10.1002/aoc.4245

    Article  CAS  Google Scholar 

  132. Pourian E, Javanshir S, Dolatkhah Z et al (2018) Ultrasonic-Assisted Preparation, Characterization, and Use of Novel Biocompatible Core/Shell Fe 3 O 4 @GA@Isinglass in the Synthesis of 1,4-Dihydropyridine and 4 H -Pyran Derivatives. ACS Omega 3:5012–5020. https://doi.org/10.1021/acsomega.8b00379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tamoradi T, Ghorbani-Choghamarani A, Ghadermazi M, Veisi H (2019) SBA-15@Glycine-M (M = Ni and Cu): two green, novel and efficient catalysts for the one-pot synthesis of 5-substituted tetrazole and polyhydroquinoline derivatives. Solid State Sci 91:96–107. https://doi.org/10.1016/j.solidstatesciences.2019.03.020

    Article  CAS  Google Scholar 

  134. Davarpanah J, Ghahremani M, Najafi O (2019) Synthesis of 1,4-dihydropyridine and polyhydroquinoline derivatives via Hantzsch reaction using nicotinic acid as a green and reusable catalyst. J Mol Struct 1177:525–535. https://doi.org/10.1016/j.molstruc.2018.10.002

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Xi Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, M.A., Liu, Z., Peng, WX. et al. New Copper Complex on Fe3O4 Nanoparticles as a Highly Efficient Reusable Nanocatalyst for Synthesis of Polyhydroquinolines in Water. Catal Lett 150, 683–701 (2020). https://doi.org/10.1007/s10562-019-02986-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02986-2

Keywords

Navigation