Skip to main content

Advertisement

Log in

Overexpression of sonic hedgehog enhances the osteogenesis in rat ectomesenchymal stem cells

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Ectoderm-derived mesenchymal stem cells (EMSCs) were used as potential seed cells for bone tissue engineering to treat bone defects due to their capability of rapid proliferation and osteogenic differentiation. Sonic hedgehog (Shh) signaling was reported to play an important role in the development of bone tissue, but its role is not understood. The present study investigated the role of Shh molecule in osteogenic differentiation of rat EMSCs in vitro. Rat EMSCs were isolated form nasal respiratory mucosa and identified with immunofluorescence and analyzed with other methods, including reverse transcriptase polymerase chain reaction (qPCR) and western blotting. EMSCs expressed CD90, CD105, nestin, and vimentin. On the seventh day of osteogenic induction, expression levels of Shh and Gli1 was higher according to the result of qPCR and Western blotting. After induction for 14 days, higher alkaline phosphatase (ALP) activity and more mineralized nodules were seen in comparison to the cells that did not undergo induction. Shh signaling appears to enhance osteogenic differentiation of rat EMSCs, suggesting that Shh signaling directs the lineage differentiation of ectodermal stem cells and represents a promising strategy for skeletal tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

  • Alzghoul MB et al (2004) Ectopic expression of IGF-I and Shh by skeletal muscle inhibits disuse-mediated skeletal muscle atrophy and bone osteopenia in vivo. Faseb j 18(1):221–223

    Article  CAS  PubMed  Google Scholar 

  • Bai CB, Joyner AL (2001) Gli1 can rescue the in vivo function of Gli2. Development 128(24):5161–5172

    Article  CAS  PubMed  Google Scholar 

  • Bragdon B et al (2011) Bone morphogenetic proteins: a critical review. Cell Signal 23(4):609–620

    Article  CAS  PubMed  Google Scholar 

  • Carvalho MS et al (2020) Loss and rescue of osteocalcin and osteopontin modulate osteogenic and angiogenic features of mesenchymal stem/stromal cells. J Cell Physiol 235(10):7496–7515

    Article  CAS  PubMed  Google Scholar 

  • Choi RB et al (2021) Notum deletion from late-stage skeletal cells increases cortical bone formation and potentiates skeletal effects of sclerostin inhibition. J Bone Miner Res 36:2413

    Article  CAS  PubMed  Google Scholar 

  • Cohen M et al (2015) Ptch1 and Gli regulate Shh signalling dynamics via multiple mechanisms. Nat Commun 6:6709

    Article  CAS  PubMed  Google Scholar 

  • Delorme B et al (2010) The human nose harbors a niche of olfactory ectomesenchymal stem cells displaying neurogenic and osteogenic properties. Stem Cells Dev 19(6):853–866

    Article  CAS  PubMed  Google Scholar 

  • Deng WW et al (2019) EMSCs build an all-in-one niche via cell-cell lipid raft assembly for promoted neuronal but suppressed astroglial differentiation of neural stem cells. Adv Mater 31(10):1806861

    Article  CAS  Google Scholar 

  • Dohle E et al (2010) Sonic hedgehog promotes angiogenesis and osteogenesis in a coculture system consisting of primary osteoblasts and outgrowth endothelial cells. Tissue Eng Part A 16(4):1235–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donnelly JM et al (2013) Sonic hedgehog mediates the proliferation and recruitment of transformed mesenchymal stem cells to the stomach. PLoS One 8(9):e75225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du X et al (2012) Role of FGFs/FGFRs in skeletal development and bone regeneration. J Cell Physiol 227(12):3731–3743

    Article  CAS  PubMed  Google Scholar 

  • Edwards PC et al (2005) Sonic hedgehog gene-enhanced tissue engineering for bone regeneration. Gene Ther 12(1):75–86

    Article  CAS  PubMed  Google Scholar 

  • Florencio-Silva R et al (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. Biomed Res Int 2015:421746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao X et al (2014) Identification of rat respiratory mucosa stem cells and comparison of the early neural differentiation potential with the bone marrow mesenchymal stem cells in vitro. Cell Mol Neurobiol 34(2):257–268

    Article  PubMed  Google Scholar 

  • Gromolak S et al (2020) Biological characteristics and osteogenic differentiation of ovine bone marrow derived mesenchymal stem cells stimulated with FGF-2 and BMP-2. Int J Mol Sci 21(24):9726

    Article  CAS  PubMed Central  Google Scholar 

  • Guo J et al (2018) Effect of Shh and BM-MSC synergism on the proliferation of hematopoietic stem cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi 26(5):1523–1530

    PubMed  Google Scholar 

  • Han W, Allam SA, Elsawa SF (2020) GLI2-mediated inflammation in the tumor microenvironment. Adv Exp Med Biol 1263:55–65

    Article  CAS  PubMed  Google Scholar 

  • Jakob M et al (2010) Human nasal mucosa contains tissue-resident immunologically responsive mesenchymal stromal cells. Stem Cells Dev 19(5):635–644

    Article  CAS  PubMed  Google Scholar 

  • James AW (2013) Review of Signaling Pathways Governing MSC Osteogenic and Adipogenic Differentiation. Scientifica (Cairo) 2013:684736

    Google Scholar 

  • James AW et al (2012) Additive effects of sonic hedgehog and Nell-1 signaling in osteogenic versus adipogenic differentiation of human adipose-derived stromal cells. Stem Cells Dev 21(12):2170–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang ZL et al (2019) Lentiviral-mediated Shh reverses the adverse effects of high glucose on osteoblast function and promotes bone formation via Sonic hedgehog signaling. Mol Med Rep 20(4):3265–3275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang Q et al (2009) A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev 18(4):545–559

    Article  CAS  PubMed  Google Scholar 

  • Kim WK et al (2010) Hedgehog signaling and osteogenic differentiation in multipotent bone marrow stromal cells are inhibited by oxidative stress. J Cell Biochem 111(5):1199–1209

    Article  CAS  PubMed  Google Scholar 

  • Kimura H, Ng JM, Curran T (2008) Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell 13(3):249–260

    Article  CAS  PubMed  Google Scholar 

  • Lee YC et al (2019) Comparing the osteogenic potentials and bone regeneration capacities of bone marrow and dental pulp mesenchymal stem cells in a rabbit calvarial bone defect model. Int J Mol Sci 20(20):5015

    Article  CAS  PubMed Central  Google Scholar 

  • Lehmann GL et al (2020) Single-cell profiling reveals an endothelium-mediated immunomodulatory pathway in the eye choroid. J Exp Med. https://doi.org/10.1084/jem.20190730

    Article  PubMed  PubMed Central  Google Scholar 

  • Lézot F et al (2020) SHH signaling pathway drives pediatric bone sarcoma progression. Cells 9(3):536

    Article  PubMed Central  CAS  Google Scholar 

  • Li G et al (2017) LNGFR targets the Wnt/β-catenin pathway and promotes the osteogenic differentiation in rat ectomesenchymal stem cells. Sci Rep 7(1):11021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li C et al (2021) Functional crosstalk between myeloid Foxo1-β-catenin axis and Hedgehog/Gli1 signaling in oxidative stress response. Cell Death Differ 28(5):1705–1719

    Article  CAS  PubMed  Google Scholar 

  • Liu X et al (2012) PTD-hFOXP3 protein acts as an immune regulator to convert human CD4(+)CD25(-) T cells to regulatory T-like cells. J Cell Biochem 113(12):3797–3809

    Article  CAS  PubMed  Google Scholar 

  • Lv J et al (2015) Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue. Biomed Mater 10(3):035013

    Article  PubMed  CAS  Google Scholar 

  • Ma L et al (2019) Crosstalk between Activin A and Shh signaling contributes to the proliferation and differentiation of antler chondrocytes. Bone 123:176–188

    Article  CAS  PubMed  Google Scholar 

  • Maeda K et al (2019) The regulation of bone metabolism and disorders by wnt signaling. Int J Mol Sci 20(22):5525

    Article  CAS  PubMed Central  Google Scholar 

  • Nancarrow-Lei R et al (2017) A systemic review of adult mesenchymal stem cell sources and their multilineage differentiation potential relevant to musculoskeletal tissue repair and regeneration. Curr Stem Cell Res Ther 12(8):601–610

    Article  CAS  PubMed  Google Scholar 

  • Noori A et al (2017) A review of fibrin and fibrin composites for bone tissue engineering. Int J Nanomedicine 12:4937–4961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portmann-Lanz CB et al (2010) Turning placenta into brain: placental mesenchymal stem cells differentiate into neurons and oligodendrocytes. Am J Obstet Gynecol 202(3):294.e1-294.e11

    Article  CAS  Google Scholar 

  • Rajurkar M et al (2012) The activity of Gli transcription factors is essential for Kras-induced pancreatic tumorigenesis. Proc Natl Acad Sci U S A 109(17):E1038–E1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riobo NA, Manning DR (2007) Pathways of signal transduction employed by vertebrate Hedgehogs. Biochem J 403(3):369–379

    Article  CAS  PubMed  Google Scholar 

  • Robert AW et al (2020) Adipogenesis, osteogenesis, and chondrogenesis of human mesenchymal stem/stromal cells: a comparative transcriptome approach. Front Cell Dev Biol 8:561

    Article  PubMed  PubMed Central  Google Scholar 

  • Saeed H et al (2016) Mesenchymal stem cells (MSCs) as skeletal therapeutics - an update. J Biomed Sci 23:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sagi HC et al (2012) Qualitative and quantitative differences between bone graft obtained from the medullary canal (with a Reamer/Irrigator/Aspirator) and the iliac crest of the same patient. J Bone Joint Surg Am 94(23):2128–2135

    Article  PubMed  Google Scholar 

  • Sándor GK et al (2014) Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med 3(4):530–540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmitz JP, Hollinger JO (1986) The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res 205:299–308

    Article  Google Scholar 

  • Shi W et al (2019) Overexpression of TG2 enhances the differentiation of ectomesenchymal stem cells into neuron-like cells and promotes functional recovery in adult rats following spinal cord injury. Mol Med Rep 20(3):2763–2773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi W et al (2021a) Enhanced neural differentiation of neural stem cells by sustained release of Shh from TG2 gene-modified EMSC co-culture in vitro. Amino Acids 53(1):11–22

    Article  CAS  PubMed  Google Scholar 

  • Shi W et al (2021b) Functional tissue-engineered bone-like graft made of a fibrin scaffold and TG2 gene-modified EMSCs for bone defect repair. NPG Asia Mater 13(1):28

    Article  CAS  Google Scholar 

  • Shin K et al (2011) Hedgehog/Wnt feedback supports regenerative proliferation of epithelial stem cells in bladder. Nature 472(7341):110–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song K et al (2011) Enhanced bone regeneration with sequential delivery of basic fibroblast growth factor and sonic hedgehog. Injury 42(8):796–802

    Article  PubMed  Google Scholar 

  • Srinivasan A et al (2021) Comparative craniofacial bone regeneration capacities of mesenchymal stem cells derived from human neural crest stem cells and bone marrow. ACS Biomater Sci Eng 7(1):207–221

    Article  CAS  PubMed  Google Scholar 

  • Takebe H et al (2020) Sonic hedgehog regulates bone fracture healing. Int J Mol Sci 21(2):677

    Article  CAS  PubMed Central  Google Scholar 

  • Takeuchi Y et al (2018) Kruppel-Like Factor 4 represses osteoblast differentiation via ciliary Hedgehog signaling. Exp Cell Res 371(2):417–425

    Article  CAS  PubMed  Google Scholar 

  • Teng CS et al (2018) Altered bone growth dynamics prefigure craniosynostosis in a zebrafish model of Saethre-Chotzen syndrome. Elife. https://doi.org/10.7554/eLife.37024

    Article  PubMed  PubMed Central  Google Scholar 

  • Towers M et al (2008) Integration of growth and specification in chick wing digit-patterning. Nature 452(7189):882–886

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Martin JF, Bai CB (2010) Direct and indirect requirements of Shh/Gli signaling in early pituitary development. Dev Biol 348(2):199–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Ren J, Li J (2012) Fibrin glue as the cell-delivery vehicle for mesenchymal stromal cells in regenerative medicine. Cytotherapy 14(5):555–562

    Article  CAS  PubMed  Google Scholar 

  • Yang J et al (2015) The Hedgehog signalling pathway in bone formation. Int J Oral Sci 7(2):73–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X et al (2010) The role of NELL-1, a growth factor associated with craniosynostosis, in promoting bone regeneration. J Dent Res 89(9):865–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z et al (2015) Nasal ectomesenchymal stem cells: multi-lineage differentiation and transformation effects on fibrin gels. Biomaterials 49:57–67

    Article  PubMed  CAS  Google Scholar 

  • Zheng C et al (2019) Stem cell-based bone and dental regeneration: a view of microenvironmental modulation. Int J Oral Sci 11(3):23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors also thank the University Ethics Committee for their kind guidance in the animal experiments. I would like to thank all my friends, especially my four lovely teammates, for their encouragement and support.

Funding

The present study was supported by grants from the National Natural Science Foundation of China (Granted Numbers: 81671541, 81273202, 81701545, and 82071738), and by the Graduate Innovation Program of Jiangsu University (Granted Number: CXLX12_0675).

Author information

Authors and Affiliations

Authors

Contributions

Weijiang Wu and Zhe Wang contribute equally to this work.

Corresponding author

Correspondence to Qixiang Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval and consent to participate

SD rat were used under the ethical approval and the ethical guidelines of the Animal Ethics Committee of Jiangnan University.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3345 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Wang, Z., Zhang, Z. et al. Overexpression of sonic hedgehog enhances the osteogenesis in rat ectomesenchymal stem cells. Cell Tissue Bank 23, 569–580 (2022). https://doi.org/10.1007/s10561-022-09994-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-022-09994-4

Keywords

Navigation