Skip to main content
Log in

Fourier Transform of the Summatory Abel–Poisson Function

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

The authors consider the current issues of the optimal decision theory, namely, the analysis of the asymptotic properties of the Fourier transform of the summatory Abel–Poisson function. The Fourier transform considered in the paper is based on the solution of the classical Laplace’s equation in polar coordinates (in the middle of the unit circle) with the corresponding boundary conditions. This Fourier transform of the summatory Abel–Poisson function is defined on the classes of fractional differential functions. The asymptotic estimates are obtained in the paper for this Fourier transform, which is an important element in solving many applied optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Chikrii and I. Matychyn, “Riemann–Liouville, Caputo, and sequential fractional derivatives in differential games,” in: M. Breton, and K. Szajowski (eds.), Advances in Dynamic Games, Vol. 11 (2011), pp. 61–81. https://doi.org/10.1007/978-0-8176-8089-3_4.

  2. A. A. Chikrii and I. I. Matichin, “Game problems for fractional-order linear systems,” Proc. Steklov Instit. Math., Vol. 268, 54–70 (2010). https://doi.org/10.1134/S0081543810050056.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. A. Chikrii and S. D. Eidelman, “Control game problems for quasilinear systems with Riemann–Liouville fractional derivatives,” Cybern. Syst. Analysis, Vol. 37, No. 6, 836–864 (2001). https://doi.org/10.1023/A:1014529914874.

    Article  MathSciNet  MATH  Google Scholar 

  4. Yu. I. Kharkevych and T. V. Zhyhallo, “Approximation of (ψ, β)-differentiable functions defined on the real axis by Abel–Poisson operators,” Ukr. Math. J., Vol. 57, No. 8, 1297–1315 (2005). https://doi.org/10.1007/s11253-005-0262-z.

    Article  MathSciNet  Google Scholar 

  5. T. V. Zhyhallo and Yu. I. Kharkevych, “On approximation of functions from the class \( {L}_{\beta, 1}^{\psi } \) by the Abel–Poisson integrals in the integral metric,” Carpathian Math. Publ., Vol. 14, No. 1, 223–229 (2022). https://doi.org/10.15330/cmp.14.1.223-229.

    Article  MathSciNet  MATH  Google Scholar 

  6. I. V. Kal’chuk and Y. I. Kharkevych, “Approximation of the classes \( {W}_{\beta, \infty}^{\psi } \) by generalized Abel–Poisson integrals,” Ukr. Math. J., Vol. 74, No. 4, 575–585 (2022). https://doi.org/10.37863/umzh.v74i4.7164.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Serdyuk and U. Hrabova, “Order estimates of the uniform approximations by Zygmund sums on the classes of convolutions of periodic functions,” Carpathian Math. Publ., Vol. 13, No. 1, 68–80 (2021). https://doi.org/10.15330/cmp.13.1.68-80.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. M. Bushev and Y. I. Kharkevych, “Conditions of convergence almost everywhere for the convolution of a function with delta-shaped kernel to this function,” Ukr. Math. J., Vol. 67, No. 11, 1643–1661 (2016). https://doi.org/10.1007/s11253-016-1180-y.

    Article  MathSciNet  MATH  Google Scholar 

  9. Yu. B. Pilipenko and A. A. Chikrii, “Oscillatory conflict-control processes,” J. Appl. Math. Mech., Vol. 57, No. 3, 407–417 (1993). https://doi.org/10.1016/0021-8928(93)90119-7.

    Article  MathSciNet  Google Scholar 

  10. J. Albus, A. Meystel, A. A. Chikrii, A. A. Belousov, and A. I. Kozlov, “Analytical method for solution of the game problem of soft landing for moving objects,” Cybern. Syst. Analysis, Vol. 37, No. 1, 75–91 (2001). https://doi.org/10.1023/A:1016620201241.

    Article  MATH  Google Scholar 

  11. A. A. Chikrii and V. K. Chikrii, “Image structure of multivalued mappings in game problems of motion control,” J. Autom. Inform. Sci., Vol. 48, Iss. 3, 20–35 (2016). https://doi.org/10.1615/JAutomatInfScien.v48.i3.30.

  12. K. M. Zhyhallo and Yu. I. Kharkevych, “Approximation of (ψ, β)-differentiable functions of low smoothness by biharmonic Poisson integrals,” Ukr. Math. J., Vol. 63, No. 12, 1820–1844 (2012). https://doi.org/10.1007/s11253-012-0616-2.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. I. Stepanets, Uniform Approximations by Trigonometric Polynomials [in Russian], Naukova Dumka, Kyiv (1981).

    Google Scholar 

  14. Yu. I. Kharkevych, “Approximative properties of the generalized Poisson integrals on the classes of functions determined by a modulus of continuity,” J. Autom. Inform. Sci., Vol. 51, Iss. 4, 43–54 (2019). https://doi.org/10.1615/JAutomatInfScien.v51.i4.40.

    Article  Google Scholar 

  15. I. V. Kal’chuk, Yu. I. Kharkevych, and K. V. Pozharska, “Asymptotics of approximation of functions by conjugate Poisson integrals,” Carpathian Math. Publ., Vol. 12, No. 1, 138–147 (2020). https://doi.org/10.15330/cmp.12.1.138-147.

    Article  MathSciNet  MATH  Google Scholar 

  16. Yu. I. Kharkevych, “On approximation of the quasi-smooth functions by their Poisson type integrals,” J. Autom. Inform. Sci., Vol. 49, Iss. 10, 74–81 (2017). https://doi.org/10.1615/JAutomatInfScien.v49.i10.80.

    Article  Google Scholar 

  17. Yu. I. Kharkevych and K. V. Pozharska, “Asymptotics of approximation of conjugate functions by Poisson integrals,” Acta Comment. Univ. Tartu. Math., Vol. 22, N. 2, 235–243 (2018). https://doi.org/10.12697/ACUTM.2018.22.19.

  18. Yu. I. Kharkevych, “Asymptotic expansions of upper bounds of deviations of functions of class Wr from their generalized Poisson integrals,” J. Autom. Inform. Sci., Vol. 50, Iss. 8, 38–49 (2018). https://doi.org/10.1615/jautomatinfscien.v50.i8.40.

    Article  Google Scholar 

  19. I. V. Kal’chuk, U. Z. Hrabova, and L. I. Filozof, “Approximation of the classes \( {W}_{\beta}^r{H}^{\alpha } \) by three-harmonic Poisson integrals,” J. Math. Sci. (N.Y.), Vol. 254, No. 3, 397–405 (2021). https://doi.org/10.1007/s10958-021-05311-8.

  20. K. M. Zhyhallo and Yu. I. Kharkevych, “Approximation of functions from the classes \( {C}_{\beta}^{\psi } \) by biharmonic Poisson integrals,” Ukr. Math. J., Vol. 63, No. 7, 1083 – 1107 (2011). https://doi.org/10.1007/s11253-011-0565-81.

  21. F. G. Abdullayev and Yu. I. Kharkevych, ‘Approximation of the classes \( {C}_{\beta}^{\psi }{H}^{\alpha } \) by biharmonic Poisson integrals,” Ukr. Math. J., Vol. 72, No. 1, 21–38 (2020). https://doi.org/10.1007/s11253-020-01761-6.

  22. U. Z. Hrabova and I. V. Kal’chuk, “Approximation of the classes \( {W}_{\beta, \infty}^r \) by three-harmonic Poisson integrals,” Carpathian Math. Publ., Vol. 11, No. 2, 10–23 (2019). https://doi.org/10.15330/cmp.11.2.321-334.

  23. Yu. I. Kharkevych and I. V. Kal’chuk, “Approximation of (ψ, β )-differentiable functions by Weierstrass integrals,” Ukr. Math. J., Vol. 59, No. 7, 1059–1087 (2007). https://doi.org/10.1007/s11253-007-0069-1.

  24. I. V. Kal’chuk, V. I. Kravets, and U. Z. Hrabova, “Approximation of the classes\( {W}_{\beta}^r{H}^{\alpha } \) by three-harmonic Poisson integrals,” J. Math. Sci. (N. Y.), Vol. 246, No. 2, 39–50 (2020). https://doi.org/10.1007/s10958-020-04721-4.

  25. U. Z. Hrabova, “Uniform approximations by the Poisson three-harmonic integrals on the Sobolev classes,” J. Autom. Inform. Sci., Vol. 51, Iss. 12, 46–55 (2019). https://doi.org/10.1615/JAutomatInfScien.v51.i12.50.

    Article  Google Scholar 

  26. L. I. Bausov, “Linear methods of summation of Fourier series with the given rectangular matrices. I,” Izv. Vuzov. Matematika, Vol. 46, No. 3, 15–31 (1965).

    MathSciNet  Google Scholar 

  27. Yu. I. Kharkevych and T. V. Zhyhallo, “Approximation of functions from the class \( {\hat{C}}_{\beta, \infty}^{\psi } \) by Poisson biharmonic operators in the uniform metric,” Ukr. Math. J., Vol. 60, No. 5, 769–798 (2008). https://doi.org/10.1007/s11253-008-0093-9.

  28. I. Kal’chuk and Y. Kharkevych, “Approximation properties of the generalized Abel–Poisson Integrals on the Weyl–Nagy classes,” Axioms, Vol. 11, No. 4, 161 (2022). https://doi.org/10.3390/axioms11040161.

  29. K. M. Zhyhallo and Yu. I. Kharkevych, “On the approximation of functions of the Hölder class by triharmonic Poisson integrals,” Ukr. Math. J., Vol. 53, No. 6, 1012–1018 (2001). https://doi.org/10.1023/A:1013364321249.

    Article  MATH  Google Scholar 

  30. A. A. Chikrii and G. Ts. Chikrii, “Matrix resolving functions in game problems of dynamics,” Proc. Steklov Instit. Mathem., Vol. 291, 56–65 (2015). https://doi.org/10.1134/S0081543815090047.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. A. Chikrii and S. D. Eidel’man, “Generalized Mittag-Leffler matrix functions in game problems for evolutionary equations of fractional order,” Cybern. Syst. Analysis, Vol. 36, No. 3, 315–338 (2000). https://doi.org/10.1007/BF02732983.

    Article  MATH  Google Scholar 

  32. L. A. Vlasenko, A. G. Rutkas, and A. A. Chikrii, “On a differential game in an abstract parabolic system,” Proc. Steklov Instit. Mathem., Vol. 293, 254–269 (2016). https://doi.org/10.1134/S0081543816050229.

    Article  MathSciNet  MATH  Google Scholar 

  33. V. Sobchuk, I. Kal’chuk, Y. Kharkevych, and G. Kharkevych, “Estimations of the convergence rate of the Fourier transformation for data processing efficiency improvement,” in: IEEE 3rd Intern. Conf. on Advanced Trends in Information Theory (ATIT) (2021), pp. 76–79. https://doi.org/10.1109/ATIT54053.2021.9678825.

  34. G. Kharkevych, Y. Kharkevych, I. Kal’chuk, and V. Sobchuk, “Usage of Fourier transformation theory in machine translation,” in: IEEE 2nd Intern. Conf. on Advanced Trends in Information Theory (IEEE ATIT 2020), Kyiv, Ukraine (2020), pp. 196–199. https://doi.org/10.1109/ATIT50783.2020.9349329.

  35. Yu. I. Kharkevych, “On some asymptotic properties of solutions to biharmonic equations,” Cybern. Syst. Analysis, Vol. 58, No. 2, 251–258 (2022). https://doi.org/10.1007/s10559-022-00457-y.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Makarchuk, I. Kal’chuk, Y. Kharkevych, and A. Yakovleva, “The usage of interpolation polynomials in the studying of data transmission in networks,” in: IEEE 2nd Intern. Conf. on System Analysis & Intelligent Computing (SAIC), Kyiv, Ukraine (2020), pp. 1–4. https://doi.org/10.1109/SAIC51296.2020.9239180.

  37. V. Sobchuk, I. Kal’chuk, G. Kharkevych, O. Laptiev, Y. Kharkevych, and A. Makarchuk, “Solving the problem of convergence of the results of analog signals conversion in the process of aircraft control,” in: IEEE 6th Intern. Conf. on Actual Problems of Unmanned Aerial Vehicles Development, APUAVD (2021), pp. 29–32. https://doi.org/10.1109/APUAVD53804.2021.9615437.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Zhyhallo.

Additional information

Translated from Kibernetyka ta Systemnyi Analiz, No. 6, November–December, 2022, pp. 120–129.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhyhallo, T.V., Kharkevych, Y.I. Fourier Transform of the Summatory Abel–Poisson Function. Cybern Syst Anal 58, 957–965 (2022). https://doi.org/10.1007/s10559-023-00530-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-023-00530-0

Keywords

Navigation