Skip to main content
Log in

Approximate Characteristics of Generalized Poisson Operators on Zygmund Classes

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

The authors analyze approximate characteristics of generalized Poisson operators on Zygmund classes Zα, with the aim of their further application in the theory of optimal decisions. Nowadays, Zygmund classes Zα are increasingly used in optimization methods, which makes the problem important. An estimate of the upper bound of the deviation of functions of the Zygmund class Zα from their generalized Poisson operators in the uniform metric is obtained. Generalized Poisson operators as solutions of the corresponding elliptic partial differential equations are positive linear operators and, therefore, they implement asymptotic approximation of functions of the class Zα in the best way. That is, we get a specific implementation of the optimization problems using the methods of approximation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Chikrii and S. D. Eidel’man, “Generalized Mittag-Leffler matrix functions in game problems for evolutionary equations of fractional order,” Cybern. Syst. Analysis, Vol. 36, No. 3, 315–338 (2000). https://doi.org/10.1007/BF02732983.

  2. Yu. B. Pilipenko and A. A. Chikrii, “Oscillatory conflict-control processes,” J. Appl. Math. and Mech., Vol. 57, No. 3, 407–417 (1993). https://doi.org/10.1016/0021-8928(93)90119-7.

    Article  MathSciNet  Google Scholar 

  3. J. Albus, A. Meystel, A. A. Chikrii, A. A. Belousov, and A. I. Kozlov, “Analytical method for solution of the game problem of soft landing for moving objects,” Cybern. Syst. Analysis, Vol. 37, No. 1, 75–91 (2001). https://doi.org/10.1023/A:1016620201241.

    Article  MATH  Google Scholar 

  4. V. S. Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  5. K. M. Zhyhallo and Yu. I. Kharkevych, “Complete asymptotics of the deviation of a class of differentiable functions from the set of their harmonic Poisson integrals,” Ukr. Math. J., Vol. 54, No. 1, 51–63 (2002). https://doi.org/10.1023/A:1019789402502.

    Article  Google Scholar 

  6. Yu. I. Kharkevych, “On approximation of the quasi-smooth functions by their Poisson type integrals,” J. Autom. Inform. Sci., Vol. 49, Iss. 10, 74–81 (2017). https://doi.org/10.1615/JAutomatInfScien.v49.i10.80.

  7. A. A. Chikrii and I. I. Matychyn, “Game problems for fractional-order linear systems,” Proc. Steklov Inst. of Math., Vol. 268, 54–70 (2010). https://doi.org/10.1134/S0081543810050056.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Chikrii and I. Matychyn, “Riemann–Liouville, Caputo, and sequential fractional derivatives in differential games,” in: M. Breton and K. Szajowski (eds.), Advances in Dynamic Games, Ser. Annals of the International Society of Dynamic Games (AISDG), Vol. 11 (2011), pp. 61–81. https://doi.org/10.1007/978-0-8176-8089-3_4.

  9. D. M. Bushev and Yu. I. Kharkevych, “Conditions of convergence almost everywhere for the convolution of a function with delta-shaped kernel to this function,” Ukr. Math. J., Vol. 67, No. 11, 1643–1661 (2016). https://doi.org/10.1007/s11253-016-1180-y.

    Article  MathSciNet  MATH  Google Scholar 

  10. G. Ts. Dzyubenko and B. N. Pshenichnyi, “Discrete differential games with information lag,” Cybernetics, Vol. 8, No. 6, 947–952 (1972). https://doi.org/10.1007/BF01068518.

  11. L. I. Bausov, “Approximating the functions of class Zα by positive methods of summation of Fourier series,” Uspekhi Mat. Nauk, Vol. 16, No. 3(99), 143–149 (1961).

  12. Yu. I. Kharkevych, “Asymptotic expansions of upper bounds of deviations of functions of class Wr from their generalized Poisson integrals,” J. Autom. Inform. Sci., Vol. 50, Iss. 8, 38–49 (2018). https://doi.org/10.1615/jautomatinfscien.v50.i8.40.

  13. A. I. Stepanets, Uniform Approximations by Trigonometric Polynomials [in Russian], Naukova Dumka, Kyiv (1981).

    MATH  Google Scholar 

  14. Yu. I. Kharkevych, “Approximative properties of the generalized Poisson integrals on the classes of functions determined by a modulus of continuity,” J. Autom. Inform. Sci., Vol. 51, Iss. 4, 43–54 (2019). https://doi.org/10.1615/JAutomatInfScien.v51.i4.40.

  15. K. M. Zhyhallo and Yu. I. Kharkevych, “On the approximation of functions of the Holder class by biharmonic Poisson integrals,” Ukr. Math. J., Vol. 52, No. 7, 1113–1117 (2000). https://doi.org/10.1023/A:1005285818550.

    Article  Google Scholar 

  16. I. V. Kal’chuk, “Approximation of (ψ, β)-differentiable functions defined on the real axis by Weierstrass operators,” Ukr. Math. J., Vol. 59, No. 9, 1342–1363 (2007). https://doi.org/10.1007/s11253-007-0091-3.

  17. Yu. I. Kharkevych and I. V. Kal’chuk, “Asymptotics of the values of approximations in the mean for classes of differentiable functions by using biharmonic Poisson integrals,” Ukr. Math. J., Vol. 59, No. 8, 1224–1237 (2007). https://doi.org/10.1007/s11253-007-0082-4.

  18. K. M. Zhyhallo and Yu. I. Kharkevych, “On the approximation of functions of the Hölder class by triharmonic Poisson integrals,” Ukr. Math. J., Vol. 53, No. 6, 1012–1018 (2001). https://doi.org/10.1023/A:1013364321249.

    Article  MATH  Google Scholar 

  19. U. Z. Hrabova and I. V. Kal’chuk, “Approximation of the classes by three-harmonic Poisson integrals,” Carpathian Math. Publ., Vol. 11, No. 2, 10–23 (2019). https://doi.org/10.15330/cmp.11.2.321-334.

  20. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Fizmatgiz, Moscow (1963).

    Google Scholar 

  21. I. V. Kal’chuk and Yu. I. Kharkevych, “Approximation of the classes by generalized Abel–Poisson integrals,” Ukr. Math. J., Vol. 74, No. 4, 575–585 (2022). https://doi.org/10.37863/umzh.v74i4.7164.

  22. K. M. Zhyhallo and Yu. I. Kharkevych, “Approximation of functions from the classes \({C}_{\beta ,\infty }^{\psi }\) by biharmonic Poisson integrals,” Ukr. Math. J., Vol. 63, No. 7, 1083–1107 (2011). https://doi.org/10.1007/s11253-011-0565-1.

    Article  MathSciNet  MATH  Google Scholar 

  23. K. M. Zhyhallo and Yu. I. Kharkevych, “Approximation of (ψ, β)-differentiable functions of low smoothness by biharmonic Poisson integrals,” Ukr. Math. J., Vol. 63, No. 12, 1820–1844 (2012). https://doi.org/10.1007/s11253-012-0616-2.

    Article  MathSciNet  MATH  Google Scholar 

  24. I. V. Kal’chuk, V. I. Kravets, and U. Z. Hrabova, “Approximation of the classes by three-harmonic Poisson integrals,” J. Math. Sci. (N.Y.), Vol. 246, No. 2, 39–50 (2020). https://doi.org/10.1007/s10958-020-04721-4.

  25. I. V. Kal’chuk, U. Z. Hrabova, and L. I. Filozof, “Approximation of the classes by three-harmonic Poisson integrals,” J. Math. Sci. (N.Y.), Vol. 254, No. 3, 397–405 (2021). https://doi.org/10.1007/s10958-021-05311-8.

  26. I. V. Kal’chuk, Yu. I. Kharkevych, and K. V. Pozharska, “Asymptotics of approximation of functions by conjugate Poisson integrals,” Carpathian Math. Publ., Vol. 12, No. 1, 138–147 (2020). https://doi.org/10.15330/cmp.12.1.138-147.

  27. I. Kal’chuk and Y. Kharkevych, “Approximation properties of the generalized Abel–Poisson integrals on the Weyl–Nagy classes,” Axioms, Vol. 11, No. 4: 161 (2022). https://doi.org/10.3390/axioms11040161.

  28. K. M. Zhyhallo and Yu. I. Kharkevych, “Approximation of differentiable periodic functions by their biharmonic Poisson integrals,” Ukr. Math. J., Vol. 54, No. 9, 1462–1470 (2002). https://doi.org/10.1023/A:1023463801914.

    Article  MATH  Google Scholar 

  29. F. G. Abdullayev and Yu. I. Kharkevych, “Approximation of the classes \({C}_{\beta }^{\psi }{H}^{\alpha }\) by biharmonic Poisson integrals,” Ukr. Math. J., Vol. 72, No. 1, 21–38 (2020). https://doi.org/10.1007/s11253-020-01761-6.

    Article  MathSciNet  MATH  Google Scholar 

  30. T. V. Zhyhallo and Yu. I. Kharkevych, “On approximation of functions from the class by the Abel–Poisson integrals in the integral metric,” Carpathian Math. Publ., Vol. 14, No. 1, 223–229 (2022). https://doi.org/10.15330/cmp.14.1.223-229.

  31. K. M. Zhyhallo and Yu. I. Kharkevych, “Approximation of conjugate differentiable functions by biharmonic Poisson integrals,” Ukr. Math. J., Vol. 61, No. 3, 399–413 (2009). https://doi.org/10.1007/s11253-009-0217-x.

    Article  MathSciNet  Google Scholar 

  32. A. A. Chikrii and G. Ts. Chikrii, “Matrix resolving functions in game problems of dynamics,” Proc. Steklov Inst. Math., Vol. 291, 56–65 (2015). https://doi.org/10.1134/S0081543815090047.

    Article  MathSciNet  MATH  Google Scholar 

  33. L. A. Vlasenko, A. G. Rutkas, and A. A. Chikrii, “On a differential game in an abstract parabolic system,” Proc. Steklov Inst. Math., Vol. 293, 254–269 (2016). https://doi.org/10.1134/S0081543816050229.

    Article  MathSciNet  MATH  Google Scholar 

  34. Yu. I. Kharkevych, “On some asymptotic properties of solutions to biharmonic equations,” Cybern. Syst. Analysis, Vol. 58, No. 2, 251–258 (2022). https://doi.org/10.1007/s10559-022-00457-y.

    Article  MathSciNet  MATH  Google Scholar 

  35. R. Tovkach, Y. Kharkevych, and I. Kal’chuk, “Application of a fourier series for an analysis of a network signals,” in: IEEE Intern. Conf. on Advanced Trends in Inform. Theory (IEEE ATIT 2019), Kyiv, Ukraine (2019), pp. 107–110. https://doi.org/10.1109/ATIT49449.2019.9030488.

  36. A. Makarchuk, I. Kal’chuk, Y. Kharkevych, and A. Yakovleva, “The usage of interpolation polynomials in the studying of data transmission in networks,” in: IEEE 2nd Intern. Conf. on System Analysis & Intelligent Computing (SAIC), Kyiv, Ukraine (2020), pp. 1–4. https://doi.org/10.1109/SAIC51296.2020.9239180.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Khanin.

Additional information

Translated from Kibernetyka ta Systemnyi Analiz, No. 1, January–February, 2023, pp. 180–190.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanin, O.G., Borsuk, B.M. Approximate Characteristics of Generalized Poisson Operators on Zygmund Classes. Cybern Syst Anal 59, 156–164 (2023). https://doi.org/10.1007/s10559-023-00550-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-023-00550-w

Keywords

Navigation