Skip to main content
Log in

On Some Asymptotic Properties of Solutions to Biharmonic Equations

  • Published:
Cybernetics and Systems Analysis Aims and scope

Abstract

The author considers the application of the approximation theory methods to the principles of optimality in the decision-making theory. In finding optimal solutions, the risk function often has rather complex structure for studying its properties, which makes it necessary to approximate the risk function to another function with simple and clear characteristics. In this regard, the asymptotic properties of the solutions of biharmonic equations as approximate functions are investigated. Complete asymptotic expansions of the upper limits of deviations of the Sobolev class functions W2 (the set that the risk functions in decision-making optimization belong to) from operators that are solutions of biharmonic equations with certain boundary conditions are obtained. The expansions allow us to find the Kolmogorov–Nikolsky constants of arbitrarily high degree of smallness, which makes it possible to estimate the approximation error when solving optimization problems with arbitrary accuracy. It is mentioned that the biharmonic equations can be used to efficiently generate mathematical models of natural and social phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. V. Maksymuk, V. V. Sobchuk, I. P. Salanda, and Yu. V. Sachuk, “A system of indicators and criteria for evaluation of the level of functional stability of information heterogenic networks,” Mathematical Modeling and Computing, Vol. 7, No. 2, 285–292 (2020). https://doi.org/10.23939/mmc2020.02.285.

    Article  Google Scholar 

  2. V. Sobchuk, V. Pichkur, O. Barabash, O. Laptiev, I. Kovalchuk, and A. Zidan, “Algorithm of control of functionally stable manufacturing processes of enterprises,” in: IEEE 2nd Intern. Conf. on Advanced Trends in Information Theory (ATIT), Kyiv, Ukraine (2020), pp. 206–210. https://doi.org/10.1109/ATIT50783.2020.9349332.

  3. V. V. Pichkur and V. V. Sobchuk, “Mathematical models and control design of a functionally stable technological process,” J. of Optimization, Diff. Equations and their Applications (JODEA), Vol. 29, No. 1, 1–11 (2021). https://doi.org/10.15421/142102.

    Article  Google Scholar 

  4. G. Ts. Dzyubenko and B. N. Pshenichnyi, “Discrete differential games with information lag,” Cybern. Syst. Analysis, Vol. 8, No. 6, 947–952 (1972). https://doi.org/10.1007/BF01068518.

    Article  Google Scholar 

  5. L. A. Vlasenko, A. G. Rutkas, and A. A. Chikrii, “On a differential game in an abstract parabolic system,” Proc. Steklov Inst. Math., Vol. 293, 254–269 (2016). https://doi.org/10.1134/S0081543816050229.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. A. Chikrii and V. K. Chikrii, “Image structure of multi-valued mappings in game problems of motion control,” J. Autom. Inform. Sci., Vol. 48, No. 3, 20–35 (2016). https://doi.org/10.1615/JAutomatInfScien.v48.i3.30.

    Article  MATH  Google Scholar 

  7. A. A. Chikrii and S. D. Eidelman, “Control game problems for quasilinear systems with Riemann–Liouville fractional derivatives,” Cybern. Syst. Analysis, Vol. 37, No. 6, 836–864 (2001). https://doi.org/10.1023/A:1014529914874.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. M. Samoilenko, V. G. Samoilenko, and V. V. Sobchuk, “On periodic solutions of the equation of a nonlinear oscillator with pulse influence,” Ukr. Math. J., Vol. 51, No. 6, 926–933 (1999). https://doi.org/10.1007/BF02591979.

    Article  Google Scholar 

  9. V. S. Vladimirov, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1981).

  10. Yu. I. Kharkevych and K. V. Pozharska, “Asymptotics of approximation of conjugate functions by Poisson integrals,” Acta Comment. Univ. Tartu. Math., Vol. 22, No. 2, 235–243 (2018). https://doi.org/10.12697/ACUTM.2018.22.19.

    Article  MathSciNet  MATH  Google Scholar 

  11. Yu. I. Kharkevych, “On approximation of the quasi-smooth functions by their Poisson type integrals,” J. Autom. Inform. Sci., Vol. 49, No. 10, 74–81 (2017). https://doi.org/10.1615/JAutomatInfScien.v49.i10.80.

    Article  Google Scholar 

  12. I. V. Kal’chuk, V. I. Kravets, and U. Z. Hrabova, “Approximation of the classes \( {W}_{\beta}^r{H}^{\alpha } \) by three-harmonic Poisson integrals,” J. Math. Sci. (N. Y.), Vol. 246, No. 2, 39–50 (2020). https://doi.org/10.1007/s10958-020-04721-4.

    Article  MATH  Google Scholar 

  13. U. Z. Hrabova and I. V. Kal’chuk, “Approximation of the classes \( {W}_{\beta, \infty}^r \) by three-harmonic Poisson integrals,” Carpathian Math. Publ., Vol. 11, No. 2, 10–23 (2019). https://doi.org/10.15330/cmp.11.2.321-334.

    Article  MathSciNet  Google Scholar 

  14. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1977).

  15. K. M. Zhyhallo and Yu. I. Kharkevych, “Approximation of functions from the classes \( {C}_{\beta, \infty}^{\psi } \) by biharmonic Poisson integrals,” Ukr. Math. J., Vol. 63, No. 7, 1083–1107 (2011). https://doi.org/10.1007/s11253-011-0565-1.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. M. Zhyhallo and Yu. I. Kharkevych, “Approximation of (ψ, β)-differentiable functions of low smoothness by biharmonic Poisson integrals,” Ukr. Math. J., Vol. 63, No. 12, 1820–1844 (2012). https://doi.org/10.1007/s11253-012-0616-2.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. A. Chikrii and G. Ts. Chikrii, “Matrix resolving functions in game problems of dynamics,” Proc. Steklov Inst. Math., Vol. 291, 56–65 (2015). https://doi.org/10.1134/S0081543815090047.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. A. Chikrii and I. I. Matichin, “Game problems for fractional-order linear systems,” Proc. Steklov Inst. Math., Vol. 268, 54–70 (2010). https://doi.org/10.1134/S0081543810050056.

    Article  MathSciNet  MATH  Google Scholar 

  19. I. V. Kal’chuk, Yu. I. Kharkevych, and K. V. Pozharska, “Asymptotics of approximation of functions by conjugate Poisson integrals,” Carpathian Math. Publ., Vol. 12, No. 1, 138–147 (2020). https://doi.org/10.15330/cmp.12.1.138-147.

    Article  MathSciNet  MATH  Google Scholar 

  20. F. G. Abdullayev and Yu. I. Kharkevych, “Approximation of the classes \( {C}_{\beta}^{\psi }{H}^{\alpha } \) by biharmonic Poisson integrals,” Ukrainian Math. J., Vol. 72, No. 1, 21–38 (2020). https://doi.org/10.1007/s11253-020-01761-6.

    Article  MathSciNet  MATH  Google Scholar 

  21. Yu. I. Kharkevych and T. V. Zhyhallo, “Approximation of functions from the class \( {\hat{C}}_{\beta, \infty}^{\psi } \) by Poisson biharmonic operators in the uniform metric,” Ukr. Math. J., Vol. 60, No. 5, 769–798 (2008). https://doi.org/10.1007/s11253-008-0093-9.

    Article  MathSciNet  Google Scholar 

  22. V. A. Baskakov, “Some properties of operators of Abel-Poisson type,” Math. Notes, Vol. 17, No. 2, 101–107 (1975). https://doi.org/10.1007/BF01161864.

    Article  MATH  Google Scholar 

  23. A. I. Stepanets, Uniform Approximations by Trigonometric Polynomials [in Russian], Nauk. Dumka, Kyiv (1981).

  24. K. M. Zhyhallo and Yu. I. Kharkevych, “On the approximation of functions of the Hölder class by triharmonic Poisson integrals,” Ukr. Math. J., Vol. 53, No. 6, 1012–1018 (2001). https://doi.org/10.1023/A:1013364321249.

    Article  MATH  Google Scholar 

  25. K. M. Zhyhallo and Yu. I. Kharkevych, “Approximation of differentiable periodic functions by their biharmonic Poisson integrals,” Ukr. Math. J., Vol. 54, No. 9, 1462–1470 (2002). https://doi.org/10.1023/A:1023463801914.

    Article  MATH  Google Scholar 

  26. P. P. Korovkin, Linear Operators and Approximation Theory [in Russian], Fizmatgiz, Moscow (1959).

  27. Yu. I. Kharkevych, “Asymptotic expansions of upper bounds of deviations of functions of class Wr from their generalized Poisson integrals,” J. Autom. Inform. Sci., Vol. 50, No. 8, 38–49 (2018). https://doi.org/10.1615/jautomatinfscien.v50.i8.40.

    Article  Google Scholar 

  28. Yu. I. Kharkevych, “Approximative properties of the generalized Poisson integrals on the classes of functions determined by a modulus of continuity,” J. Autom. Inform. Sci., Vol. 51, No. 4, 43–54 (2019). https://doi.org/10.1615/JAutomatInfScien.v51.i4.40.

    Article  Google Scholar 

  29. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series and Products [in Russian], Fizmatgiz, Moscow (1963).

  30. A. Makarchuk, I. Kal’chuk, Y. Kharkevych, and A. Yakovleva, “The usage of interpolation polynomials in the studying of data transmission in networks,” in: IEEE 2nd Intern. Conf. on System Analysis & Intelligent Computing (SAIC), Kyiv, Ukraine (2020), pp. 1–4. https://doi.org/10.1109/SAIC51296.2020.9239180.

  31. A. Makarchuk, I. Kal’chuk, Y. Kharkevych, and T. Voloshyna, “Usage of Fourier transformation in theoretical studying of signals in data transmission,” in: IEEE 2nd Intern. Conf. on Advanced Trends in Information Theory (IEEE ATIT 2020), Kyiv, Ukraine (2020), pp. 192–195. https://doi.org/10.1109/ATIT50783.2020.9349308.

  32. G. Kharkevych, Y. Kharkevych, I. Kal’chuk, and V. Sobchuk, “Usage of Fourier transformation theory in machine translation,” in: IEEE 2nd Intern. Conf. on Advanced Trends in Information Theory (IEEE ATIT 2020), Kyiv, Ukraine (2020), pp. 196–199. https://doi.org/10.1109/ATIT50783.2020.9349329.

  33. R. Tovkach, Y. Kharkevych, and I. Kal’chuk, “Application of a Fourier series for an analysis of a network signals,” in: IEEE Intern. Conf. on Advanced Trends in Inform. Theory (IEEE ATIT 2019), Kyiv, Ukraine (2019), pp. 107–110. https://doi.org/10.1109/ATIT49449.2019.9030488.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Kharkevych.

Additional information

Translated from Kibernetyka ta Systemnyi Analiz, No. 2, March–April, 2022, pp. 108–117.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharkevych, Y.I. On Some Asymptotic Properties of Solutions to Biharmonic Equations. Cybern Syst Anal 58, 251–258 (2022). https://doi.org/10.1007/s10559-022-00457-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10559-022-00457-y

Keywords

Navigation