Skip to main content
Log in

An existence result for a fractional Kirchhoff–Schrödinger–Poisson system

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

By using minimax arguments we prove the existence of a nontrivial solution for a fractional Kirchhoff–Schrödinger–Poisson system in \(\mathbb {R}^{3}\) involving a Berestycki–Lions type nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, V.: Mountain pass solutions for the fractional Berestycki–Lions problem. Adv. Differ. Equ. 23(5–6), 455–488 (2018)

    MathSciNet  Google Scholar 

  2. Ambrosio, V.: Ground states solutions for a non-linear equation involving a pseudo-relativistic Schrödinger operator. J. Math. Phys. 57(5), 051502 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, V.: Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method. Ann. Mat. Pura Appl. (4) 196(6), 2043–2062 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ambrosio, V., Isernia, T.: A multiplicity result for a fractional Kirchhoff equation in \({\mathbb{R}}^{N}\) with a general nonlinearity. Commun. Contemp. Math. https://doi.org/10.1142/s0219199717500547 (in press)

  5. Azzollini, A.: Concentration and compactness in nonlinear Schrödinger–Poisson system with a general nonlinearity. J. Differ. Equ. 249, 1746–1763 (2010)

    Article  MATH  Google Scholar 

  6. Azzollini, A., d’Avenia, P., Pomponio, A.: On the Schrödinger–Maxwell equations under the effect of a general nonlinear term. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(2), 779–791 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11(2), 283–293 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berestycki, H., Lions, P.L.: Nonlinear scalar field equations. I. Existence of a ground state. Arch. Ration. Mech. Anal. 82(4), 313–345 (1983)

    MathSciNet  MATH  Google Scholar 

  9. Bernstein, S.: Sur une classe d’équations fonctionnelles aux dérivées partielles. Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4, 17–26 (1940)

    MathSciNet  MATH  Google Scholar 

  10. Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, vol. 20. Springer, Cham. Unione Matematica Italiana, Bologna (2016). ISBN: 978-3-319-28738-6. ISBN: 978-3-319-28739-3

  11. Byeon, J.: Singularly perturbed nonlinear Dirichlet problems with a general nonlinearity. Trans. Am. Math. Soc. 362(4), 1981–2001 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Byeon, J., Jeanjean, L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity. Arch. Ration. Mech. Anal. 185(2), 185–200 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chang, X., Wang, Z.-Q.: Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity 26(2), 479–494 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, C.-N., Tanaka, K.: A variational approach for standing waves of FitzHugh–Nagumo type systems. J. Differ. Equ. 257(1), 109–144 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. D’Aprile, T., Mugnai, D.: Non-existence result for the coupled Klein–Gordon–Maxwell equations. Adv. Nonlinear Stu. 4, 307–322 (2004)

    MathSciNet  MATH  Google Scholar 

  16. Dávila, J., del Pino, M., Dipierro, S., Valdinoci, E.: Concentration phenomena for the nonlocal Schrödinger equation with Dirichlet datum. Anal. PDE 8(5), 1165–1235 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dávila, J., del Pino, M., Wei, J.: Concentrating standing waves for the fractional nonlinear Schrödinger equation. J. Differ. Equ. 256(2), 858–892 (2014)

    Article  MATH  Google Scholar 

  18. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dipierro, S., Medina, M., Valdinoci, E.: Fractional elliptic problems with critical growth in the whole of \({\mathbb{R}}^{n}\). Appunti. Scuola Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)], vol. 15. Edizioni della Normale, Pisa (2017). ISBN: 978-88-7642-600-1. ISBN: 978-88-7642-601-8

  20. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142, 1237–1262 (2012)

    Article  MATH  Google Scholar 

  21. Figueiredo, G.M., Ikoma, N., Junior, J.R.S.: Existence and concentration result for the Kirchhoff type equations with general nonlinearities. Arch. Ration. Mech. Anal. 213, 931–979 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94, 156–170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hirata, J., Ikoma, N., Tanaka, K.: Nonlinear scalar field equations in \({\mathbb{R}}^{N}\): mountain pass and symmetric mountain pass approaches. Topol. Methods Nonlinear Anal. 35, 253–276 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Jeanjean, J.: On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on \({\mathbb{R}}^N\). Proc. R. Soc. Edinb. Sect. A 129(4), 787–809 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jeanjean, L., Le Coz, S.: An existence and stability result for standing waves of nonlinear Schrödinger equations. Adv. Differ. Equ. 11(7), 813–840 (2006)

    MATH  Google Scholar 

  26. Kikuchi, H.: Existence and stability of standing waves for Schrödinger–Poisson–Slater equation. Adv. Nonlinear Stud. 7(3), 403–437 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

    MATH  Google Scholar 

  28. Laskin, N.: Fractional quantum mechanics and Lèvy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  29. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  30. Lions, J.L.: On some questions in boundary value problems of mathematical physics. In: Contemporary developments in continuum mechanics and partial differential equations (Proceedings of International Symposium on Institute of Mathematics, University Federal Rio de Janeiro, Rio de Janeiro, 1977). North-Holland Mathematics Studies, vol. 30, pp. 284–346. North-Holland, Amsterdam (1978)

  31. Lions, P.L.: Symetrié et compacité dans les espaces de Sobolev. J. Funct. Anal. 49(3), 315–334 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lü, D., Peng, S.: Existence and asymptotic behavior of vector solutions for coupled nonlinear Kirchhoff-type systems. J. Differ. Equ. 263(12), 8947–8978 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Molica Bisci, G., Rădulescu, V., Servadei, R.: Variational Methods for Nonlocal Fractional Problems, with a Foreword by Jean Mawhin. Encyclopedia of Mathematics and Its Applications, vol. 162. Cambridge University Press, Cambridge (2016)

  34. Molica Bisci, G., Vilasi, L.: On a fractional degenerate Kirchhoff-type problem. Commun. Contemp. Math. 19(1), 1550088, 23 pp (2017)

  35. Pohožaev, S.I.: A certain class of quasilinear hyperbolic equations. Mat. Sb. 96, 152–166 (1975)

    MathSciNet  Google Scholar 

  36. Pucci, P., Xiang, M., Zhang, B.: Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the fractional \(p\)-Laplacian in \({\mathbb{R}}^{N}\). Calc. Var. Partial Differ. Equ. 54, 2785–2806 (2015)

    Article  MATH  Google Scholar 

  37. Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237(2), 655–674 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in \({\mathbb{R}}^{N}\). J. Math. Phys. 54, 031501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Secchi, S.: On fractional Schrödinger equations in \({\mathbb{R}}^{N}\) without the Ambrosetti-Rabinowitz condition. Topol. Methods Nonlinear Anal. 47(1), 19–41 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Teng, K.: Existence of ground state solutions for the nonlinear fractional Schrödinger–Poisson system with critical Sobolev exponent. J. Differ. Equ. 261(6), 3061–3106 (2016)

    Article  MATH  Google Scholar 

  41. Zhang, J., do Ó, M., Squassina, M.: Fractional Schrödinger–Poisson systems with a general subcritical or critical nonlinearity. Adv. Nonlinear Stud. 16(1), 1530 (2016)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the referees for their detailed comments which improved the presentation of the paper in an essential way. The paper has been carried out under the auspices of the INdAM—GNAMPA Project 2017 titled: Teoria e modelli per problemi non locali.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Ambrosio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosio, V. An existence result for a fractional Kirchhoff–Schrödinger–Poisson system. Z. Angew. Math. Phys. 69, 30 (2018). https://doi.org/10.1007/s00033-018-0921-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0921-1

Keywords

Mathematics Subject Classification

Navigation