Skip to main content
Log in

Progress toward liquid biopsies in pediatric solid tumors

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Pediatric solid tumors have long been known to shed tumor cells, DNA, RNA, and proteins into the blood. Recent technological advances have allowed for improved capture and analysis of these typically scant circulating materials. Efforts are ongoing to develop “liquid biopsy” assays as minimally invasive tools to address diagnostic, prognostic, and disease monitoring needs in childhood cancer care. Applying these highly sensitive technologies to serial liquid biopsies is expected to advance understanding of tumor biology, heterogeneity, and evolution over the course of therapy, thus opening new avenues for personalized therapy. In this review, we outline the latest technologies available for liquid biopsies and describe the methods, pitfalls, and benefits of the assays that are being developed for children with extracranial solid tumors. We discuss what has been learned in several of the most common pediatric solid tumors including neuroblastoma, sarcoma, Wilms tumor, and hepatoblastoma and highlight promising future directions for the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tomasetti, C., Li, L., & Vogelstein, B. (2017). Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science, 355(6331), 1330–1334. https://doi.org/10.1126/science.aaf9011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Applebaum, M. A., Vaksman, Z., Lee, S. M., Hungate, E. A., Henderson, T. O., London, W. B., et al. (2017). Neuroblastoma survivors are at increased risk for second malignancies: a report from the International Neuroblastoma Risk Group Project. European Journal of Cancer, 72, 177–185. https://doi.org/10.1016/j.ejca.2016.11.022.

    Article  PubMed  Google Scholar 

  3. Ginsberg, J. P., Goodman, P., Leisenring, W., Ness, K. K., Meyers, P. A., Wolden, S. L., et al. (2010). Long-term survivors of childhood Ewing sarcoma: report from the childhood cancer survivor study. Journal of the National Cancer Institute, 102(16), 1272–1283. https://doi.org/10.1093/jnci/djq278.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Oeffinger, K. C., & Bhatia, S. (2009). Second primary cancers in survivors of childhood cancer. Lancet, 374(9700), 1484–1485. https://doi.org/10.1016/S0140-6736(09)61885-7.

    Article  PubMed  Google Scholar 

  5. Oeffinger, K. C., Mertens, A. C., Sklar, C. A., Kawashima, T., Hudson, M. M., Meadows, A. T., et al. (2006). Chronic health conditions in adult survivors of childhood cancer. The New England Journal of Medicine, 355(15), 1572–1582. https://doi.org/10.1056/NEJMsa060185.

    Article  CAS  PubMed  Google Scholar 

  6. Kirchhoff, A. C., Nipp, R., Warner, E. L., Kuhlthau, K., Leisenring, W. M., Donelan, K., et al. (2018). "Job Lock" Among Long-term Survivors of Childhood Cancer: a report from the childhood cancer survivor study. JAMA Oncology, 4(5), 707–711. https://doi.org/10.1001/jamaoncol.2017.3372.

    Article  PubMed  Google Scholar 

  7. Nagarajan, R., Kamruzzaman, A., Ness, K. K., Marchese, V. G., Sklar, C., Mertens, A., et al. (2011). Twenty years of follow-up of survivors of childhood osteosarcoma: a report from the Childhood Cancer Survivor Study. Cancer, 117(3), 625–634. https://doi.org/10.1002/cncr.25446.

    Article  PubMed  Google Scholar 

  8. Termuhlen, A. M., Tersak, J. M., Liu, Q., Yasui, Y., Stovall, M., Weathers, R., et al. (2011). Twenty-five year follow-up of childhood Wilms tumor: a report from the Childhood Cancer Survivor Study. Pediatric Blood & Cancer, 57(7), 1210–1216. https://doi.org/10.1002/pbc.23090.

    Article  Google Scholar 

  9. Zheng, D. J., Krull, K. R., Chen, Y., Diller, L., Yasui, Y., Leisenring, W., et al. (2018). Long-term psychological and educational outcomes for survivors of neuroblastoma: a report from the Childhood Cancer Survivor Study. Cancer, 124(15), 3220–3230. https://doi.org/10.1002/cncr.31379.

    Article  CAS  PubMed  Google Scholar 

  10. Cohn, S. L., Pearson, A. D., London, W. B., Monclair, T., Ambros, P. F., Brodeur, G. M., et al. (2009). The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. Journal of Clinical Oncology, 27(2), 289–297. https://doi.org/10.1200/JCO.2008.16.6785.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Twist, C. J., Naranjo, A., Schmidt, M. L., Tenney, S. C., Cohn, S. L., Meany, H. J., et al. (2019). Defining Risk Factors for Chemotherapeutic Intervention in Infants With Stage 4S Neuroblastoma: a Report From Children's Oncology Group Study ANBL0531. Journal of Clinical Oncology, 37(2), 115–124. https://doi.org/10.1200/JCO.18.00419.

    Article  CAS  PubMed  Google Scholar 

  12. Dome, J. S., Perlman, E. J., & Graf, N. (2014). Risk stratification for wilms tumor: current approach and future directions. American Society of Clinical Oncology Educational Book, 215–223. https://doi.org/10.14694/EdBook_AM.2014.34.215.

  13. Meyers, R. L., Maibach, R., Hiyama, E., Haberle, B., Krailo, M., Rangaswami, A., et al. (2017). Risk-stratified staging in paediatric hepatoblastoma: a unified analysis from the Children's Hepatic tumors International Collaboration. The Lancet Oncology, 18(1), 122–131. https://doi.org/10.1016/S1470-2045(16)30598-8.

    Article  PubMed  Google Scholar 

  14. Harris, M. H., DuBois, S. G., Glade Bender, J. L., Kim, A., Crompton, B. D., Parker, E., et al. (2016). Multicenter Feasibility Study of Tumor Molecular Profiling to Inform Therapeutic Decisions in Advanced Pediatric Solid Tumors: the Individualized Cancer Therapy (iCat) Study. JAMA Oncology. https://doi.org/10.1001/jamaoncol.2015.5689.

    Article  PubMed  Google Scholar 

  15. Mody, R. J., Wu, Y. M., Lonigro, R. J., Cao, X., Roychowdhury, S., Vats, P., et al. (2015). Integrative Clinical Sequencing in the Management of Refractory or Relapsed Cancer in Youth. JAMA, 314(9), 913–925. https://doi.org/10.1001/jama.2015.10080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Weiser, D. A., Kaste, S. C., Siegel, M. J., & Adamson, P. C. (2013). Imaging in childhood cancer: a Society for Pediatric Radiology and Children's Oncology Group Joint Task Force report. Pediatric Blood & Cancer, 60(8), 1253–1260. https://doi.org/10.1002/pbc.24533.

    Article  Google Scholar 

  17. Mandel, P., & Metais, P. (1948). Les acides nucleiques du plasma sanguin chez l'homme. Comptes Rendus des Seances de la Societe de Biologie et de Ses Filiales, 142(3-4), 241–243.

    CAS  PubMed  Google Scholar 

  18. Wan, J. C. M., Massie, C., Garcia-Corbacho, J., Mouliere, F., Brenton, J. D., Caldas, C., et al. (2017). Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nature Reviews. Cancer, 17(4), 223–238. https://doi.org/10.1038/nrc.2017.7.

    Article  CAS  PubMed  Google Scholar 

  19. Abbou, S. D., Shulman, D. S., DuBois, S. G., & Crompton, B. D. (2019). Assessment of circulating tumor DNA in pediatric solid tumors: the promise of liquid biopsies. Pediatric Blood & Cancer, 66(5), e27595. https://doi.org/10.1002/pbc.27595.

    Article  Google Scholar 

  20. Rossi, G., & Ignatiadis, M. (2019). Promises and Pitfalls of Using Liquid Biopsy for Precision Medicine. Cancer Research, 79(11), 2798–2804. https://doi.org/10.1158/0008-5472.CAN-18-3402.

    Article  CAS  PubMed  Google Scholar 

  21. Grobner, S. N., Worst, B. C., Weischenfeldt, J., Buchhalter, I., Kleinheinz, K., Rudneva, V. A., et al. (2018). The landscape of genomic alterations across childhood cancers. Nature, 555(7696), 321–327. https://doi.org/10.1038/nature25480.

    Article  CAS  PubMed  Google Scholar 

  22. Ashworth, T. R. (1869). A case of cancer in which cells similar to those in the tumours were seen in the blood after death. The Medical Journal of Australia, 14, 146–147.

    Google Scholar 

  23. Allard, W. J., Matera, J., Miller, M. C., Repollet, M., Connelly, M. C., Rao, C., et al. (2004). Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clinical Cancer Research, 10(20), 6897–6904. https://doi.org/10.1158/1078-0432.CCR-04-0378.

    Article  PubMed  Google Scholar 

  24. Nagrath, S., Sequist, L. V., Maheswaran, S., Bell, D. W., Irimia, D., Ulkus, L., et al. (2007). Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature, 450(7173), 1235–1239. https://doi.org/10.1038/nature06385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peterson, M. F., Otoc, N., Sethi, J. K., Gupta, A., & Antes, T. J. (2015). Integrated systems for exosome investigation. Methods, 87, 31–45. https://doi.org/10.1016/j.ymeth.2015.04.015.

    Article  CAS  PubMed  Google Scholar 

  26. Contreras-Naranjo, J. C., Wu, H. J., & Ugaz, V. M. (2017). Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab on a Chip, 17(21), 3558–3577. https://doi.org/10.1039/c7lc00592j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jiang, N., Pan, J., Fang, S., Zhou, C., Han, Y., Chen, J., et al. (2019). Liquid biopsy: circulating exosomal long noncoding RNAs in cancer. Clinica Chimica Acta, 495, 331–337. https://doi.org/10.1016/j.cca.2019.04.082.

    Article  CAS  Google Scholar 

  28. Whiteside, T. L. (2016). Tumor-Derived Exosomes and Their Role in Cancer Progression. Advances in Clinical Chemistry, 74, 103–141. https://doi.org/10.1016/bs.acc.2015.12.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kalluri, R. (2016). The biology and function of exosomes in cancer. The Journal of Clinical Investigation, 126(4), 1208–1215. https://doi.org/10.1172/JCI81135.

    Article  PubMed  PubMed Central  Google Scholar 

  30. He, M., & Zeng, Y. (2016). Microfluidic Exosome Analysis toward Liquid Biopsy for Cancer. Journal of Laboratory Automation, 21(4), 599–608. https://doi.org/10.1177/2211068216651035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kowal, J., Tkach, M., & Thery, C. (2014). Biogenesis and secretion of exosomes. Current Opinion in Cell Biology, 29, 116–125. https://doi.org/10.1016/j.ceb.2014.05.004.

    Article  CAS  PubMed  Google Scholar 

  32. Melo, S. A., Luecke, L. B., Kahlert, C., Fernandez, A. F., Gammon, S. T., Kaye, J., et al. (2015). Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature, 523(7559), 177–182. https://doi.org/10.1038/nature14581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Esteller, M. (2007). Cancer epigenomics: DNA methylomes and histone-modification maps. Nature Reviews. Genetics, 8(4), 286–298. https://doi.org/10.1038/nrg2005.

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., et al. (2008). Combinatorial patterns of histone acetylations and methylations in the human genome. Nature Genetics, 40(7), 897–903. https://doi.org/10.1038/ng.154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu, J., Zhang, X., Pelayo, R., Monestier, M., Ammollo, C. T., Semeraro, F., et al. (2009). Extracellular histones are major mediators of death in sepsis. Nature Medicine, 15(11), 1318–1321. https://doi.org/10.1038/nm.2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Holdenrieder, S., Stieber, P., Bodenmuller, H., Busch, M., Fertig, G., Furst, H., et al. (2001). Nucleosomes in serum of patients with benign and malignant diseases. International Journal of Cancer, 95(2), 114–120. https://doi.org/10.1002/1097-0215(20010320)95:2<114::aid-ijc1020>3.0.co;2-q.

    Article  CAS  PubMed  Google Scholar 

  37. Kuroi, K., Tanaka, C., & Toi, M. (1999). Plasma Nucleosome Levels in Node-Negative Breast Cancer Patients. Breast Cancer, 6(4), 361–364.

    Article  CAS  PubMed  Google Scholar 

  38. Fahmueller, Y. N., Nagel, D., Hoffmann, R. T., Tatsch, K., Jakobs, T., Stieber, P., et al. (2012). Predictive and prognostic value of circulating nucleosomes and serum biomarkers in patients with metastasized colorectal cancer undergoing Selective Internal Radiation Therapy. BMC Cancer, 12, 5. https://doi.org/10.1186/1471-2407-12-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schwarzenbach, H., Hoon, D. S., & Pantel, K. (2011). Cell-free nucleic acids as biomarkers in cancer patients. Nature Reviews. Cancer, 11(6), 426–437. https://doi.org/10.1038/nrc3066.

    Article  CAS  PubMed  Google Scholar 

  40. Chen, X. Q., Stroun, M., Magnenat, J. L., Nicod, L. P., Kurt, A. M., Lyautey, J., et al. (1996). Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nature Medicine, 2(9), 1033–1035. https://doi.org/10.1038/nm0996-1033.

    Article  CAS  PubMed  Google Scholar 

  41. Nawroz, H., Koch, W., Anker, P., Stroun, M., & Sidransky, D. (1996). Microsatellite alterations in serum DNA of head and neck cancer patients. Nature Medicine, 2(9), 1035–1037. https://doi.org/10.1038/nm0996-1035.

    Article  CAS  PubMed  Google Scholar 

  42. Lo, Y. M., Corbetta, N., Chamberlain, P. F., Rai, V., Sargent, I. L., Redman, C. W., et al. (1997). Presence of fetal DNA in maternal plasma and serum. Lancet, 350(9076), 485–487. https://doi.org/10.1016/S0140-6736(97)02174-0.

    Article  CAS  PubMed  Google Scholar 

  43. Jahr, S., Hentze, H., Englisch, S., Hardt, D., Fackelmayer, F. O., Hesch, R. D., et al. (2001). DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Research, 61(4), 1659–1665.

    CAS  PubMed  Google Scholar 

  44. Snyder, M. W., Kircher, M., Hill, A. J., Daza, R. M., & Shendure, J. (2016). Cell-free DNA Comprises an In Vivo Nucleosome Footprint that Informs Its Tissues-Of-Origin. Cell, 164(1-2), 57–68. https://doi.org/10.1016/j.cell.2015.11.050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thierry, A. R., El Messaoudi, S., Gahan, P. B., Anker, P., & Stroun, M. (2016). Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Reviews, 35(3), 347–376. https://doi.org/10.1007/s10555-016-9629-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Diehl, F., Li, M., Dressman, D., He, Y., Shen, D., Szabo, S., et al. (2005). Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proceedings of the National Academy of Sciences of the United States of America, 102(45), 16368–16373. https://doi.org/10.1073/pnas.0507904102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Stewart, C. M., & Tsui, D. W. Y. (2018). Circulating cell-free DNA for non-invasive cancer management. Cancer Genetics, 228-229, 169–179. https://doi.org/10.1016/j.cancergen.2018.02.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Diaz Jr., L. A., Williams, R. T., Wu, J., Kinde, I., Hecht, J. R., Berlin, J., et al. (2012). The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature, 486(7404), 537–540. https://doi.org/10.1038/nature11219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murtaza, M., Dawson, S. J., Tsui, D. W., Gale, D., Forshew, T., Piskorz, A. M., et al. (2013). Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature, 497(7447), 108–112. https://doi.org/10.1038/nature12065.

    Article  CAS  PubMed  Google Scholar 

  50. Kopreski, M. S., Benko, F. A., Kwak, L. W., & Gocke, C. D. (1999). Detection of tumor messenger RNA in the serum of patients with malignant melanoma. Clinical Cancer Research, 5(8), 1961–1965.

    CAS  PubMed  Google Scholar 

  51. Reis, E. M., & Verjovski-Almeida, S. (2012). Perspectives of Long Non-Coding RNAs in Cancer Diagnostics. Frontiers in Genetics, 3, 32. https://doi.org/10.3389/fgene.2012.00032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Qi, P., Zhou, X. Y., & Du, X. (2016). Circulating long non-coding RNAs in cancer: current status and future perspectives. Molecular Cancer, 15(1), 39. https://doi.org/10.1186/s12943-016-0524-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Reid, G., Kirschner, M. B., & van Zandwijk, N. (2011). Circulating microRNAs: association with disease and potential use as biomarkers. Critical Reviews in Oncology/Hematology, 80(2), 193–208. https://doi.org/10.1016/j.critrevonc.2010.11.004.

    Article  PubMed  Google Scholar 

  54. Vickers, K. C., Palmisano, B. T., Shoucri, B. M., Shamburek, R. D., & Remaley, A. T. (2011). MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature Cell Biology, 13(4), 423–433. https://doi.org/10.1038/ncb2210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., et al. (2011). Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proceedings of the National Academy of Sciences of the United States of America, 108(12), 5003–5008. https://doi.org/10.1073/pnas.1019055108.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Miller, M. C., Doyle, G. V., & Terstappen, L. W. (2010). Significance of Circulating Tumor Cells Detected by the CellSearch System in Patients with Metastatic Breast Colorectal and Prostate Cancer. Journal of Oncology, 2010, 617421. https://doi.org/10.1155/2010/617421.

    Article  PubMed  Google Scholar 

  57. Alix-Panabieres, C. (2012). EPISPOT assay: detection of viable DTCs/CTCs in solid tumor patients. Recent Results in Cancer Research, 195, 69–76. https://doi.org/10.1007/978-3-642-28160-0_6.

    Article  PubMed  Google Scholar 

  58. Ramskold, D., Luo, S., Wang, Y. C., Li, R., Deng, Q., Faridani, O. R., et al. (2012). Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nature Biotechnology, 30(8), 777–782. https://doi.org/10.1038/nbt.2282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Im, H., Shao, H., Park, Y. I., Peterson, V. M., Castro, C. M., Weissleder, R., et al. (2014). Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nature Biotechnology, 32(5), 490–495. https://doi.org/10.1038/nbt.2886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Castellanos-Rizaldos, E., Grimm, D. G., Tadigotla, V., Hurley, J., Healy, J., Neal, P. L., et al. (2018). Exosome-Based Detection of EGFR T790M in Plasma from Non-Small Cell Lung Cancer Patients. Clinical Cancer Research, 24(12), 2944–2950. https://doi.org/10.1158/1078-0432.CCR-17-3369.

    Article  CAS  PubMed  Google Scholar 

  61. McAnena, P., Brown, J. A., & Kerin, M. J. (2017). Circulating Nucleosomes and Nucleosome Modifications as Biomarkers in Cancer. Cancers (Basel), 9(1). https://doi.org/10.3390/cancers9010005.

    Article  PubMed Central  Google Scholar 

  62. Gale, D., Lawson, A. R. J., Howarth, K., Madi, M., Durham, B., Smalley, S., et al. (2018). Development of a highly sensitive liquid biopsy platform to detect clinically-relevant cancer mutations at low allele fractions in cell-free DNA. PLoS One, 13(3), e0194630. https://doi.org/10.1371/journal.pone.0194630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Leary, R. J., Sausen, M., Kinde, I., Papadopoulos, N., Carpten, J. D., Craig, D., et al. (2012). Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Science Translational Medicine, 4(162), 162ra154. https://doi.org/10.1126/scitranslmed.3004742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wasserkort, R., Kalmar, A., Valcz, G., Spisak, S., Krispin, M., Toth, K., et al. (2013). Aberrant septin 9 DNA methylation in colorectal cancer is restricted to a single CpG island. BMC Cancer, 13, 398. https://doi.org/10.1186/1471-2407-13-398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li, W., Zhang, X., Lu, X., You, L., Song, Y., Luo, Z., et al. (2017). 5-Hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers. Cell Research, 27(10), 1243–1257. https://doi.org/10.1038/cr.2017.121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Song, C. X., Yin, S., Ma, L., Wheeler, A., Chen, Y., Zhang, Y., et al. (2017). 5-Hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages. Cell Research, 27(10), 1231–1242. https://doi.org/10.1038/cr.2017.106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sanders, R., Mason, D. J., Foy, C. A., & Huggett, J. F. (2013). Evaluation of digital PCR for absolute RNA quantification. PLoS One, 8(9), e75296. https://doi.org/10.1371/journal.pone.0075296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Giraldez, M. D., Spengler, R. M., Etheridge, A., Godoy, P. M., Barczak, A. J., Srinivasan, S., et al. (2018). Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA profiling. Nature Biotechnology, 36(8), 746–757. https://doi.org/10.1038/nbt.4183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lim, S. B., Di Lee, W., Vasudevan, J., Lim, W. T., & Lim, C. T. (2019). Liquid biopsy: one cell at a time. NPJ Precision Oncology, 3, 23. https://doi.org/10.1038/s41698-019-0095-0.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pantel, K., Brakenhoff, R. H., & Brandt, B. (2008). Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nature Reviews. Cancer, 8(5), 329–340. https://doi.org/10.1038/nrc2375.

    Article  CAS  PubMed  Google Scholar 

  71. Bidard, F. C., Peeters, D. J., Fehm, T., Nole, F., Gisbert-Criado, R., Mavroudis, D., et al. (2014). Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. The Lancet Oncology, 15(4), 406–414. https://doi.org/10.1016/S1470-2045(14)70069-5.

    Article  PubMed  Google Scholar 

  72. Bidard, F. C., Michiels, S., Riethdorf, S., Mueller, V., Esserman, L. J., Lucci, A., et al. (2018). Circulating tumor cells in breast cancer patients treated by neoadjuvant chemotherapy: a meta-analysis. Journal of the National Cancer Institute, 110(6), 560–567. https://doi.org/10.1093/jnci/djy018.

    Article  PubMed  Google Scholar 

  73. Adams, D. L., Stefansson, S., Haudenschild, C., Martin, S. S., Charpentier, M., Chumsri, S., et al. (2015). Cytometric characterization of circulating tumor cells captured by microfiltration and their correlation to the CellSearch((R)) CTC test. Cytometry. Part A, 87(2), 137–144. https://doi.org/10.1002/cyto.a.22613.

    Article  CAS  Google Scholar 

  74. Lee, Y., Guan, G., & Bhagat, A. A. (2018). ClearCell(R) FX, a label-free microfluidics technology for enrichment of viable circulating tumor cells. Cytometry. Part A, 93(12), 1251–1254. https://doi.org/10.1002/cyto.a.23507.

    Article  Google Scholar 

  75. Li, X., Corbett, A. L., Taatizadeh, E., Tasnim, N., Little, J. P., Garnis, C., et al. (2019). Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL Bioengineering, 3(1), 011503. https://doi.org/10.1063/1.5087122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fraga, M. F., Ballestar, E., Villar-Garea, A., Boix-Chornet, M., Espada, J., Schotta, G., et al. (2005). Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nature Genetics, 37(4), 391–400. https://doi.org/10.1038/ng1531.

    Article  CAS  PubMed  Google Scholar 

  77. Seligson, D. B., Horvath, S., Shi, T., Yu, H., Tze, S., Grunstein, M., et al. (2005). Global histone modification patterns predict risk of prostate cancer recurrence. Nature, 435(7046), 1262–1266. https://doi.org/10.1038/nature03672.

    Article  CAS  PubMed  Google Scholar 

  78. Gezer, U., Yoruker, E. E., Keskin, M., Kulle, C. B., Dharuman, Y., & Holdenrieder, S. (2015). Histone Methylation Marks on Circulating Nucleosomes as Novel Blood-Based Biomarker in Colorectal Cancer. International Journal of Molecular Sciences, 16(12), 29654–29662. https://doi.org/10.3390/ijms161226180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bauden, M., Pamart, D., Ansari, D., Herzog, M., Eccleston, M., Micallef, J., et al. (2015). Circulating nucleosomes as epigenetic biomarkers in pancreatic cancer. Clinical Epigenetics, 7, 106. https://doi.org/10.1186/s13148-015-0139-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ulz, P., Thallinger, G. G., Auer, M., Graf, R., Kashofer, K., Jahn, S. W., et al. (2016). Inferring expressed genes by whole-genome sequencing of plasma DNA. Nature Genetics, 48(10), 1273–1278. https://doi.org/10.1038/ng.3648.

    Article  CAS  PubMed  Google Scholar 

  81. Vogelstein, B., & Kinzler, K. W. (1999). Digital PCR. Proceedings of the National Academy of Sciences of the United States of America, 96(16), 9236–9241. https://doi.org/10.1073/pnas.96.16.9236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhu, Z., Jenkins, G., Zhang, W., Zhang, M., Guan, Z., & Yang, C. J. (2012). Single-molecule emulsion PCR in microfluidic droplets. Analytical and Bioanalytical Chemistry, 403(8), 2127–2143. https://doi.org/10.1007/s00216-012-5914-x.

    Article  CAS  PubMed  Google Scholar 

  83. Li, M., Diehl, F., Dressman, D., Vogelstein, B., & Kinzler, K. W. (2006). BEAMing up for detection and quantification of rare sequence variants. Nature Methods, 3(2), 95–97. https://doi.org/10.1038/nmeth850.

    Article  CAS  PubMed  Google Scholar 

  84. O'Leary, B., Hrebien, S., Beaney, M., Fribbens, C., Garcia-Murillas, I., Jiang, J., et al. (2019). Comparison of BEAMing and Droplet Digital PCR for Circulating Tumor DNA Analysis. Clinical Chemistry. https://doi.org/10.1373/clinchem.2019.305805.

    Article  PubMed  Google Scholar 

  85. Choi, M., Scholl, U. I., Ji, W., Liu, T., Tikhonova, I. R., Zumbo, P., et al. (2009). Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 106(45), 19096–19101. https://doi.org/10.1073/pnas.0910672106.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Forshew, T., Murtaza, M., Parkinson, C., Gale, D., Tsui, D. W., Kaper, F., et al. (2012). Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Science Translational Medicine, 4(136), 136ra168. https://doi.org/10.1126/scitranslmed.3003726.

    Article  CAS  Google Scholar 

  87. Koeppel, F., Blanchard, S., Jovelet, C., Genin, B., Marcaillou, C., Martin, E., et al. (2017). Whole exome sequencing for determination of tumor mutation load in liquid biopsy from advanced cancer patients. PLoS One, 12(11), e0188174. https://doi.org/10.1371/journal.pone.0188174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nakagawa, H., Wardell, C. P., Furuta, M., Taniguchi, H., & Fujimoto, A. (2015). Cancer whole-genome sequencing: present and future. Oncogene, 34(49), 5943–5950. https://doi.org/10.1038/onc.2015.90.

    Article  CAS  PubMed  Google Scholar 

  89. Chan, K. C., Jiang, P., Zheng, Y. W., Liao, G. J., Sun, H., Wong, J., et al. (2013). Cancer genome scanning in plasma: detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral heterogeneity by massively parallel sequencing. Clinical Chemistry, 59(1), 211–224. https://doi.org/10.1373/clinchem.2012.196014.

    Article  CAS  PubMed  Google Scholar 

  90. Pasaniuc, B., Rohland, N., McLaren, P. J., Garimella, K., Zaitlen, N., Li, H., et al. (2012). Extremely low-coverage sequencing and imputation increases power for genome-wide association studies. Nature Genetics, 44(6), 631–635. https://doi.org/10.1038/ng.2283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Adalsteinsson, V. A., Ha, G., Freeman, S. S., Choudhury, A. D., Stover, D. G., Parsons, H. A., et al. (2017). Scalable whole-exome sequencing of cell-free DNA reveals high concordance with metastatic tumors. Nature Communications, 8(1), 1324. https://doi.org/10.1038/s41467-017-00965-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hovelson, D. H., Liu, C. J., Wang, Y., Kang, Q., Henderson, J., Gursky, A., et al. (2017). Rapid, ultra low coverage copy number profiling of cell-free DNA as a precision oncology screening strategy. Oncotarget, 8(52), 89848–89866. https://doi.org/10.18632/oncotarget.21163.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Jaenisch, R., & Bird, A. (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics, 33(Suppl), 245–254. https://doi.org/10.1038/ng1089.

    Article  CAS  PubMed  Google Scholar 

  94. Bernstein, B. E., Meissner, A., & Lander, E. S. (2007). The mammalian epigenome. Cell, 128(4), 669–681. https://doi.org/10.1016/j.cell.2007.01.033.

    Article  CAS  PubMed  Google Scholar 

  95. Kustanovich, A., Schwartz, R., Peretz, T., & Grinshpun, A. (2019). Life and death of circulating cell-free DNA. Cancer Biology & Therapy, 20(8), 1057–1067. https://doi.org/10.1080/15384047.2019.1598759.

    Article  CAS  Google Scholar 

  96. Luo, C., Hajkova, P., & Ecker, J. R. (2018). Dynamic DNA methylation: in the right place at the right time. Science, 361(6409), 1336–1340. https://doi.org/10.1126/science.aat6806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ehrlich, M. (2006). Cancer-linked DNA hypomethylation and its relationship to hypermethylation. Current Topics in Microbiology and Immunology, 310, 251–274. https://doi.org/10.1007/3-540-31181-5_12.

    Article  CAS  PubMed  Google Scholar 

  98. Ehrlich, M. (2009). DNA hypomethylation in cancer cells. Epigenomics, 1(2), 239–259. https://doi.org/10.2217/epi.09.33.

    Article  CAS  PubMed  Google Scholar 

  99. Melnikov, A. A., Gartenhaus, R. B., Levenson, A. S., Motchoulskaia, N. A., & Levenson Chernokhvostov, V. V. (2005). MSRE-PCR for analysis of gene-specific DNA methylation. Nucleic Acids Research, 33(10), e93. https://doi.org/10.1093/nar/gni092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Sasaki, M., Anast, J., Bassett, W., Kawakami, T., Sakuragi, N., & Dahiya, R. (2003). Bisulfite conversion-specific and methylation-specific PCR: a sensitive technique for accurate evaluation of CpG methylation. Biochemical and Biophysical Research Communications, 309(2), 305–309. https://doi.org/10.1016/j.bbrc.2003.08.005.

    Article  CAS  PubMed  Google Scholar 

  101. Brunner, A. L., Johnson, D. S., Kim, S. W., Valouev, A., Reddy, T. E., Neff, N. F., et al. (2009). Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Research, 19(6), 1044–1056. https://doi.org/10.1101/gr.088773.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Maunakea, A. K., Nagarajan, R. P., Bilenky, M., Ballinger, T. J., D'Souza, C., Fouse, S. D., et al. (2010). Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature, 466(7303), 253–257. https://doi.org/10.1038/nature09165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Taiwo, O., Wilson, G. A., Morris, T., Seisenberger, S., Reik, W., Pearce, D., et al. (2012). Methylome analysis using MeDIP-seq with low DNA concentrations. Nature Protocols, 7(4), 617–636. https://doi.org/10.1038/nprot.2012.012.

    Article  CAS  PubMed  Google Scholar 

  104. Aberg, K. A., McClay, J. L., Nerella, S., Xie, L. Y., Clark, S. L., Hudson, A. D., et al. (2012). MBD-seq as a cost-effective approach for methylome-wide association studies: demonstration in 1500 case--control samples. Epigenomics, 4(6), 605–621. https://doi.org/10.2217/epi.12.59.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang, L., Szulwach, K. E., Hon, G. C., Song, C. X., Park, B., Yu, M., et al. (2013). Tet-mediated covalent labelling of 5-methylcytosine for its genome-wide detection and sequencing. Nature Communications, 4, 1517. https://doi.org/10.1038/ncomms2527.

    Article  CAS  PubMed  Google Scholar 

  106. Wang, Q., Gu, L., Adey, A., Radlwimmer, B., Wang, W., Hovestadt, V., et al. (2013). Tagmentation-based whole-genome bisulfite sequencing. Nature Protocols, 8(10), 2022–2032. https://doi.org/10.1038/nprot.2013.118.

    Article  CAS  PubMed  Google Scholar 

  107. Chan, K. C., Jiang, P., Chan, C. W., Sun, K., Wong, J., Hui, E. P., et al. (2013). Noninvasive detection of cancer-associated genome-wide hypomethylation and copy number aberrations by plasma DNA bisulfite sequencing. Proceedings of the National Academy of Sciences of the United States of America, 110(47), 18761–18768. https://doi.org/10.1073/pnas.1313995110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lee, E. J., Luo, J., Wilson, J. M., & Shi, H. (2013). Analyzing the cancer methylome through targeted bisulfite sequencing. Cancer Letters, 340(2), 171–178. https://doi.org/10.1016/j.canlet.2012.10.040.

    Article  CAS  PubMed  Google Scholar 

  109. Shen, S. Y., Singhania, R., Fehringer, G., Chakravarthy, A., Roehrl, M. H. A., Chadwick, D., et al. (2018). Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature, 563(7732), 579–583. https://doi.org/10.1038/s41586-018-0703-0.

    Article  CAS  PubMed  Google Scholar 

  110. Shen, S. Y., Burgener, J. M., Bratman, S. V., & De Carvalho, D. D. (2019). Preparation of cfMeDIP-seq libraries for methylome profiling of plasma cell-free DNA. Nature Protocols, 14(10), 2749–2780. https://doi.org/10.1038/s41596-019-0202-2.

    Article  CAS  PubMed  Google Scholar 

  111. Song, C. X., & He, C. (2013). Potential functional roles of DNA demethylation intermediates. Trends in Biochemical Sciences, 38(10), 480–484. https://doi.org/10.1016/j.tibs.2013.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zeng, C., Stroup, E. K., Zhang, Z., Chiu, B. C., & Zhang, W. (2019). Towards precision medicine: advances in 5-hydroxymethylcytosine cancer biomarker discovery in liquid biopsy. Cancer Communications (Lond), 39(1), 12. https://doi.org/10.1186/s40880-019-0356-x.

    Article  Google Scholar 

  113. Pastor, W. A., Pape, U. J., Huang, Y., Henderson, H. R., Lister, R., Ko, M., et al. (2011). Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature, 473(7347), 394–397. https://doi.org/10.1038/nature10102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Song, C. X., Szulwach, K. E., Fu, Y., Dai, Q., Yi, C., Li, X., et al. (2011). Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nature Biotechnology, 29(1), 68–72. https://doi.org/10.1038/nbt.1732.

    Article  CAS  PubMed  Google Scholar 

  115. Yu, M., Hon, G. C., Szulwach, K. E., Song, C. X., Zhang, L., Kim, A., et al. (2012). Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell, 149(6), 1368–1380. https://doi.org/10.1016/j.cell.2012.04.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Petterson, A., Chung, T. H., Tan, D., Sun, X., & Jia, X. Y. (2014). RRHP: a tag-based approach for 5-hydroxymethylcytosine mapping at single-site resolution. Genome Biology, 15(9), 456. https://doi.org/10.1186/s13059-014-0456-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zeng, H., He, B., Xia, B., Bai, D., Lu, X., Cai, J., et al. (2018). Bisulfite-Free, Nanoscale Analysis of 5-Hydroxymethylcytosine at Single Base Resolution. Journal of the American Chemical Society, 140(41), 13190–13194. https://doi.org/10.1021/jacs.8b08297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hu, L., Liu, Y., Han, S., Yang, L., Cui, X., Gao, Y., et al. (2019). Jump-seq: genome-Wide Capture and Amplification of 5-Hydroxymethylcytosine Sites. Journal of the American Chemical Society, 141(22), 8694–8697. https://doi.org/10.1021/jacs.9b02512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang, Y., Zhang, X., Wu, F., Chen, Z., & Zhou, X. (2019). Bisulfite-free, single base-resolution analysis of 5-hydroxymethylcytosine in genomic DNA by chemical-mediated mismatch. Chemical Science, 10(2), 447–452. https://doi.org/10.1039/c8sc04272a.

    Article  CAS  PubMed  Google Scholar 

  120. Han, D., Lu, X., Shih, A. H., Nie, J., You, Q., Xu, M. M., et al. (2016). A Highly Sensitive and Robust Method for Genome-wide 5hmC Profiling of Rare Cell Populations. Molecular Cell, 63(4), 711–719. https://doi.org/10.1016/j.molcel.2016.06.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Cai, J., Chen, L., Zhang, Z., Zhang, X., Lu, X., Liu, W., et al. (2019). Genome-wide mapping of 5-hydroxymethylcytosines in circulating cell-free DNA as a non-invasive approach for early detection of hepatocellular carcinoma. Gut. https://doi.org/10.1136/gutjnl-2019-318882.

    Article  PubMed  Google Scholar 

  122. Chiu, B. C., Zhang, Z., You, Q., Zeng, C., Stepniak, E., Bracci, P. M., et al. (2019). Prognostic implications of 5-hydroxymethylcytosines from circulating cell-free DNA in diffuse large B-cell lymphoma. Blood Advances, 3(19), 2790–2799. https://doi.org/10.1182/bloodadvances.2019000175.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Gao, P., Lin, S., Cai, M., Zhu, Y., Song, Y., Sui, Y., et al. (2019). 5-Hydroxymethylcytosine profiling from genomic and cell-free DNA for colorectal cancers patients. Journal of Cellular and Molecular Medicine, 23(5), 3530–3537. https://doi.org/10.1111/jcmm.14252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang, J., Han, X., Gao, C., Xing, Y., Qi, Z., Liu, R., et al. (2018). 5-Hydroxymethylome in Circulating Cell-free DNA as A Potential Biomarker for Non-small-cell Lung Cancer. Genomics, Proteomics & Bioinformatics, 16(3), 187–199. https://doi.org/10.1016/j.gpb.2018.06.002.

    Article  CAS  Google Scholar 

  125. Tian, X., Sun, B., Chen, C., Gao, C., Zhang, J., Lu, X., et al. (2018). Circulating tumor DNA 5-hydroxymethylcytosine as a novel diagnostic biomarker for esophageal cancer. Cell Research, 28(5), 597–600. https://doi.org/10.1038/s41422-018-0014-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Del Re, M., Marconcini, R., Pasquini, G., Rofi, E., Vivaldi, C., Bloise, F., et al. (2018). PD-L1 mRNA expression in plasma-derived exosomes is associated with response to anti-PD-1 antibodies in melanoma and NSCLC. British Journal of Cancer, 118(6), 820–824. https://doi.org/10.1038/bjc.2018.9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. David, L., Huber, W., Granovskaia, M., Toedling, J., Palm, C. J., Bofkin, L., et al. (2006). A high-resolution map of transcription in the yeast genome. Proceedings of the National Academy of Sciences of the United States of America, 103(14), 5320–5325. https://doi.org/10.1073/pnas.0601091103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang, Z., Gerstein, M., & Snyder, M. (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews. Genetics, 10(1), 57–63. https://doi.org/10.1038/nrg2484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Buschmann, D., Haberberger, A., Kirchner, B., Spornraft, M., Riedmaier, I., Schelling, G., et al. (2016). Toward reliable biomarker signatures in the age of liquid biopsies - how to standardize the small RNA-Seq workflow. Nucleic Acids Research, 44(13), 5995–6018. https://doi.org/10.1093/nar/gkw545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Giraldez, M. D., Spengler, R. M., Etheridge, A., Goicochea, A. J., Tuck, M., Choi, S. W., et al. (2019). Phospho-RNA-seq: a modified small RNA-seq method that reveals circulating mRNA and lncRNA fragments as potential biomarkers in human plasma. The EMBO Journal, 38(11). https://doi.org/10.15252/embj.2019101695.

  131. Yuan, T., Huang, X., Woodcock, M., Du, M., Dittmar, R., Wang, Y., et al. (2016). Plasma extracellular RNA profiles in healthy and cancer patients. Scientific Reports, 6, 19413. https://doi.org/10.1038/srep19413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pinto, N. R., Applebaum, M. A., Volchenboum, S. L., Matthay, K. K., London, W. B., Ambros, P. F., et al. (2015). Advances in Risk Classification and Treatment Strategies for Neuroblastoma. Journal of Clinical Oncology, 33(27), 3008–3017. https://doi.org/10.1200/JCO.2014.59.4648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Park, J. R., Kreissman, S. G., London, W. B., Naranjo, A., Cohn, S. L., Hogarty, M. D., et al. (2019). Effect of Tandem Autologous Stem Cell Transplant vs Single Transplant on Event-Free Survival in Patients With High-Risk Neuroblastoma: a Randomized Clinical Trial. JAMA, 322(8), 746–755. https://doi.org/10.1001/jama.2019.11642.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Tsuchida, Y., Honna, T., Iwanaka, T., Saeki, M., Taguchi, N., Kaneko, T., et al. (1987). Serial determination of serum neuron-specific enolase in patients with neuroblastoma and other pediatric tumors. Journal of Pediatric Surgery, 22(5), 419–424. https://doi.org/10.1016/s0022-3468(87)80261-0.

    Article  CAS  PubMed  Google Scholar 

  135. Zeltzer, P. M., Marangos, P. J., Evans, A. E., & Schneider, S. L. (1986). Serum neuron-specific enolase in children with neuroblastoma. Relationship to stage and disease course. Cancer, 57(6), 1230–1234. https://doi.org/10.1002/1097-0142(19860315)57:6<1230::aid-cncr2820570628>3.0.co;2-#.

    Article  CAS  PubMed  Google Scholar 

  136. Kogner, P., Bjork, O., & Theodorsson, E. (1993). Neuropeptide Y in neuroblastoma: increased concentration in metastasis, release during surgery, and characterization of plasma and tumor extracts. Medical and Pediatric Oncology, 21(5), 317–322. https://doi.org/10.1002/mpo.2950210502.

    Article  CAS  PubMed  Google Scholar 

  137. Kogner, P., Theodorsson, E., & Bjork, O. (1991). Plasma neuropeptide Y (NPY): a novel marker of neuroblastoma. Progress in Clinical and Biological Research, 366, 367–373.

    CAS  PubMed  Google Scholar 

  138. Kogner, P., Bjork, O., & Theodorsson, E. (1990). Neuropeptide Y as a marker in pediatric neuroblastoma. Pediatric Pathology, 10(1-2), 207–216. https://doi.org/10.3109/15513819009067108.

    Article  CAS  PubMed  Google Scholar 

  139. Valentino, L., Moss, T., Olson, E., Wang, H. J., Elashoff, R., & Ladisch, S. (1990). Shed tumor gangliosides and progression of human neuroblastoma. Blood, 75(7), 1564–1567.

    Article  CAS  PubMed  Google Scholar 

  140. Moss, T. J., & Sanders, D. G. (1990). Detection of neuroblastoma cells in blood. Journal of Clinical Oncology, 8(4), 736–740. https://doi.org/10.1200/JCO.1990.8.4.736.

    Article  CAS  PubMed  Google Scholar 

  141. Mattano Jr., L. A., Moss, T. J., & Emerson, S. G. (1992). Sensitive detection of rare circulating neuroblastoma cells by the reverse transcriptase-polymerase chain reaction. Cancer Research, 52(17), 4701–4705.

    CAS  PubMed  Google Scholar 

  142. Seeger, R. C., Reynolds, C. P., Gallego, R., Stram, D. O., Gerbing, R. B., & Matthay, K. K. (2000). Quantitative tumor cell content of bone marrow and blood as a predictor of outcome in stage IV neuroblastoma: a Children's Cancer Group Study. Journal of Clinical Oncology, 18(24), 4067–4076. https://doi.org/10.1200/JCO.2000.18.24.4067.

    Article  CAS  PubMed  Google Scholar 

  143. Burchill, S. A., Lewis, I. J., Abrams, K. R., Riley, R., Imeson, J., Pearson, A. D., et al. (2001). Circulating neuroblastoma cells detected by reverse transcriptase polymerase chain reaction for tyrosine hydroxylase mRNA are an independent poor prognostic indicator in stage 4 neuroblastoma in children over 1 year. Journal of Clinical Oncology, 19(6), 1795–1801. https://doi.org/10.1200/JCO.2001.19.6.1795.

    Article  CAS  PubMed  Google Scholar 

  144. Viprey, V. F., Gregory, W. M., Corrias, M. V., Tchirkov, A., Swerts, K., Vicha, A., et al. (2014). Neuroblastoma mRNAs predict outcome in children with stage 4 neuroblastoma: a European HR-NBL1/SIOPEN study. Journal of Clinical Oncology, 32(10), 1074–1083. https://doi.org/10.1200/JCO.2013.53.3604.

    Article  CAS  PubMed  Google Scholar 

  145. Stutterheim, J., Gerritsen, A., Zappeij-Kannegieter, L., Yalcin, B., Dee, R., van Noesel, M. M., et al. (2009). Detecting minimal residual disease in neuroblastoma: the superiority of a panel of real-time quantitative PCR markers. Clinical Chemistry, 55(7), 1316–1326. https://doi.org/10.1373/clinchem.2008.117945.

    Article  CAS  PubMed  Google Scholar 

  146. Marachelian, A., Villablanca, J. G., Liu, C. W., Liu, B., Goodarzian, F., Lai, H. A., et al. (2017). Expression of Five Neuroblastoma Genes in Bone Marrow or Blood of Patients with Relapsed/Refractory Neuroblastoma Provides a New Biomarker for Disease and Prognosis. Clinical Cancer Research, 23(18), 5374–5383. https://doi.org/10.1158/1078-0432.CCR-16-2647.

    Article  CAS  PubMed  Google Scholar 

  147. Yanez, Y., Grau, E., Oltra, S., Canete, A., Martinez, F., Orellana, C., et al. (2011). Minimal disease detection in peripheral blood and bone marrow from patients with non-metastatic neuroblastoma. Journal of Cancer Research and Clinical Oncology, 137(8), 1263–1272. https://doi.org/10.1007/s00432-011-0997-x.

    Article  PubMed  Google Scholar 

  148. Zeka, F., Decock, A., Van Goethem, A., Vanderheyden, K., Demuynck, F., Lammens, T., et al. (2018). Circulating microRNA biomarkers for metastatic disease in neuroblastoma patients. JCI Insight, 3(23). https://doi.org/10.1172/jci.insight.97021.

  149. Morini, M., Cangelosi, D., Segalerba, D., Marimpietri, D., Raggi, F., Castellano, A., et al. (2019). Exosomal microRNAs from Longitudinal Liquid Biopsies for the Prediction of Response to Induction Chemotherapy in High-Risk Neuroblastoma Patients: a Proof of Concept SIOPEN Study. Cancers (Basel), 11(10). https://doi.org/10.3390/cancers11101476.

    Article  PubMed Central  Google Scholar 

  150. Chicard, M., Boyault, S., Colmet Daage, L., Richer, W., Gentien, D., Pierron, G., et al. (2016). Genomic Copy Number Profiling Using Circulating Free Tumor DNA Highlights Heterogeneity in Neuroblastoma. Clinical Cancer Research, 22(22), 5564–5573. https://doi.org/10.1158/1078-0432.CCR-16-0500.

    Article  CAS  PubMed  Google Scholar 

  151. Van Roy, N., Van Der Linden, M., Menten, B., Dheedene, A., Vandeputte, C., Van Dorpe, J., et al. (2017). Shallow Whole Genome Sequencing on Circulating Cell-Free DNA Allows Reliable Noninvasive Copy-Number Profiling in Neuroblastoma Patients. Clinical Cancer Research, 23(20), 6305–6314. https://doi.org/10.1158/1078-0432.CCR-17-0675.

    Article  CAS  PubMed  Google Scholar 

  152. Chicard, M., Colmet-Daage, L., Clement, N., Danzon, A., Bohec, M., Bernard, V., et al. (2018). Whole-Exome Sequencing of Cell-Free DNA Reveals Temporo-spatial Heterogeneity and Identifies Treatment-Resistant Clones in Neuroblastoma. Clinical Cancer Research, 24(4), 939–949. https://doi.org/10.1158/1078-0432.CCR-17-1586.

    Article  CAS  PubMed  Google Scholar 

  153. Klega, K., Imamovic-Tuco, A., Ha, G., Clapp, A. N., Meyer, S., Ward, A., et al. (2018). Detection of Somatic Structural Variants Enables Quantification and Characterization of Circulating Tumor DNA in Children With Solid Tumors. JCO Precision Oncology, 2018. https://doi.org/10.1200/PO.17.00285.

  154. Kojima, M., Hiyama, E., Fukuba, I., Yamaoka, E., Ueda, Y., Onitake, Y., et al. (2013). Detection of MYCN amplification using blood plasma: noninvasive therapy evaluation and prediction of prognosis in neuroblastoma. Pediatric Surgery International, 29(11), 1139–1145. https://doi.org/10.1007/s00383-013-3374-9.

    Article  PubMed  Google Scholar 

  155. Combaret, V., Hogarty, M. D., London, W. B., McGrady, P., Iacono, I., Brejon, S., et al. (2009). Influence of neuroblastoma stage on serum-based detection of MYCN amplification. Pediatric Blood & Cancer, 53(3), 329–331. https://doi.org/10.1002/pbc.22009.

    Article  Google Scholar 

  156. Gotoh, T., Hosoi, H., Iehara, T., Kuwahara, Y., Osone, S., Tsuchiya, K., et al. (2005). Prediction of MYCN amplification in neuroblastoma using serum DNA and real-time quantitative polymerase chain reaction. Journal of Clinical Oncology, 23(22), 5205–5210. https://doi.org/10.1200/JCO.2005.02.014.

    Article  CAS  PubMed  Google Scholar 

  157. Combaret, V., Bergeron, C., Noguera, R., Iacono, I., & Puisieux, A. (2005). Circulating MYCN DNA predicts MYCN-amplification in neuroblastoma. Journal of Clinical Oncology, 23(34), 8919–8920; author reply 8920. https://doi.org/10.1200/JCO.2005.04.0170.

    Article  PubMed  Google Scholar 

  158. Combaret, V., Audoynaud, C., Iacono, I., Favrot, M. C., Schell, M., Bergeron, C., et al. (2002). Circulating MYCN DNA as a tumor-specific marker in neuroblastoma patients. Cancer Research, 62(13), 3646–3648.

    CAS  PubMed  Google Scholar 

  159. Lodrini, M., Sprussel, A., Astrahantseff, K., Tiburtius, D., Konschak, R., Lode, H. N., et al. (2017). Using droplet digital PCR to analyze MYCN and ALK copy number in plasma from patients with neuroblastoma. Oncotarget, 8(49), 85234–85251. https://doi.org/10.18632/oncotarget.19076.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Combaret, V., Brejon, S., Iacono, I., Schleiermacher, G., Pierron, G., Ribeiro, A., et al. (2011). Determination of 17q gain in patients with neuroblastoma by analysis of circulating DNA. Pediatric Blood & Cancer, 56(5), 757–761. https://doi.org/10.1002/pbc.22816.

    Article  Google Scholar 

  161. Yagyu, S., Iehara, T., Gotoh, T., Miyachi, M., Katsumi, Y., Kikuchi, K., et al. (2011). Preoperative analysis of 11q loss using circulating tumor-released DNA in serum: a novel diagnostic tool for therapy stratification of neuroblastoma. Cancer Letters, 309(2), 185–189. https://doi.org/10.1016/j.canlet.2011.05.032.

    Article  CAS  PubMed  Google Scholar 

  162. Misawa, A., Tanaka, S., Yagyu, S., Tsuchiya, K., Iehara, T., Sugimoto, T., et al. (2009). RASSF1A hypermethylation in pretreatment serum DNA of neuroblastoma patients: a prognostic marker. British Journal of Cancer, 100(2), 399–404. https://doi.org/10.1038/sj.bjc.6604887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Yagyu, S., Gotoh, T., Iehara, T., Miyachi, M., Katsumi, Y., Tsubai-Shimizu, S., et al. (2008). Circulating methylated-DCR2 gene in serum as an indicator of prognosis and therapeutic efficacy in patients with MYCN nonamplified neuroblastoma. Clinical Cancer Research, 14(21), 7011–7019. https://doi.org/10.1158/1078-0432.CCR-08-1249.

    Article  CAS  PubMed  Google Scholar 

  164. Hayashi, M., Zhu, P., McCarty, G., Meyer, C. F., Pratilas, C. A., Levin, A., et al. (2017). Size-based detection of sarcoma circulating tumor cells and cell clusters. Oncotarget, 8(45), 78965–78977. https://doi.org/10.18632/oncotarget.20697.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Barris, D. M., Weiner, S. B., Dubin, R. A., Fremed, M., Zhang, X., Piperdi, S., et al. (2018). Detection of circulating tumor DNA in patients with osteosarcoma. Oncotarget, 9(16), 12695–12704. https://doi.org/10.18632/oncotarget.24268.

    Article  PubMed  PubMed Central  Google Scholar 

  166. Shulman, D. S., Klega, K., Imamovic-Tuco, A., Clapp, A., Nag, A., Thorner, A. R., et al. (2018). Detection of circulating tumour DNA is associated with inferior outcomes in Ewing sarcoma and osteosarcoma: a report from the Children's Oncology Group. British Journal of Cancer, 119(5), 615–621. https://doi.org/10.1038/s41416-018-0212-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Allen-Rhoades, W., Kurenbekova, L., Satterfield, L., Parikh, N., Fuja, D., Shuck, R. L., et al. (2015). Cross-species identification of a plasma microRNA signature for detection, therapeutic monitoring, and prognosis in osteosarcoma. Cancer Medicine, 4(7), 977–988. https://doi.org/10.1002/cam4.438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ma, W., Zhang, X., Chai, J., Chen, P., Ren, P., & Gong, M. (2014). Circulating miR-148a is a significant diagnostic and prognostic biomarker for patients with osteosarcoma. Tumour Biology, 35(12), 12467–12472. https://doi.org/10.1007/s13277-014-2565-x.

    Article  CAS  PubMed  Google Scholar 

  169. Schleiermacher, G., Peter, M., Oberlin, O., Philip, T., Rubie, H., Mechinaud, F., et al. (2003). Increased risk of systemic relapses associated with bone marrow micrometastasis and circulating tumor cells in localized ewing tumor. Journal of Clinical Oncology, 21(1), 85–91. https://doi.org/10.1200/JCO.2003.03.006.

    Article  PubMed  Google Scholar 

  170. Hayashi, M., Chu, D., Meyer, C. F., Llosa, N. J., McCarty, G., Morris, C. D., et al. (2016). Highly personalized detection of minimal Ewing sarcoma disease burden from plasma tumor DNA. Cancer, 122(19), 3015–3023. https://doi.org/10.1002/cncr.30144.

    Article  CAS  PubMed  Google Scholar 

  171. Krumbholz, M., Hellberg, J., Steif, B., Bauerle, T., Gillmann, C., Fritscher, T., et al. (2016). Genomic EWSR1 Fusion Sequence as Highly Sensitive and Dynamic Plasma Tumor Marker in Ewing Sarcoma. Clinical Cancer Research, 22(17), 4356–4365. https://doi.org/10.1158/1078-0432.CCR-15-3028.

    Article  CAS  PubMed  Google Scholar 

  172. Allegretti, M., Casini, B., Mandoj, C., Benini, S., Alberti, L., Novello, M., et al. (2018). Precision diagnostics of Ewing's sarcoma by liquid biopsy: circulating EWS-FLI1 fusion transcripts. Therapeutic Advances in Medical Oncology, 10, 1758835918774337. https://doi.org/10.1177/1758835918774337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Eguchi-Ishimae, M., Tezuka, M., Kokeguchi, T., Nagai, K., Moritani, K., Yonezawa, S., et al. (2019). Early detection of the PAX3-FOXO1 fusion gene in circulating tumor-derived DNA in a case of alveolar rhabdomyosarcoma. Genes, Chromosomes & Cancer, 58(8), 521–529. https://doi.org/10.1002/gcc.22734.

    Article  CAS  Google Scholar 

  174. Miyachi, M., Tsuchiya, K., Yoshida, H., Yagyu, S., Kikuchi, K., Misawa, A., et al. (2010). Circulating muscle-specific microRNA, miR-206, as a potential diagnostic marker for rhabdomyosarcoma. Biochemical and Biophysical Research Communications, 400(1), 89–93. https://doi.org/10.1016/j.bbrc.2010.08.015.

    Article  CAS  PubMed  Google Scholar 

  175. Jimenez, I., Chicard, M., Colmet-Daage, L., Clement, N., Danzon, A., Lapouble, E., et al. (2019). Circulating tumor DNA analysis enables molecular characterization of pediatric renal tumors at diagnosis. International Journal of Cancer, 144(1), 68–79. https://doi.org/10.1002/ijc.31620.

    Article  CAS  PubMed  Google Scholar 

  176. Murray, M. J., Raby, K. L., Saini, H. K., Bailey, S., Wool, S. V., Tunnacliffe, J. M., et al. (2015). Solid tumors of childhood display specific serum microRNA profiles. Cancer Epidemiology, Biomarkers & Prevention, 24(2), 350–360. https://doi.org/10.1158/1055-9965.EPI-14-0669.

    Article  CAS  Google Scholar 

  177. Ludwig, N., Nourkami-Tutdibi, N., Backes, C., Lenhof, H. P., Graf, N., Keller, A., et al. (2015). Circulating serum miRNAs as potential biomarkers for nephroblastoma. Pediatric Blood & Cancer, 62(8), 1360–1367. https://doi.org/10.1002/pbc.25481.

    Article  CAS  Google Scholar 

  178. Schmitt, J., Backes, C., Nourkami-Tutdibi, N., Leidinger, P., Deutscher, S., Beier, M., et al. (2012). Treatment-independent miRNA signature in blood of Wilms tumor patients. BMC Genomics, 13, 379. https://doi.org/10.1186/1471-2164-13-379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Treger, T. D., Chagtai, T., Butcher, R., Cresswell, G. D., Al-Saadi, R., Brok, J., et al. (2018). Somatic TP53 Mutations Are Detectable in Circulating Tumor DNA from Children with Anaplastic Wilms Tumors. Translational Oncology, 11(6), 1301–1306. https://doi.org/10.1016/j.tranon.2018.08.006.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Charlton, J., Williams, R. D., Weeks, M., Sebire, N. J., Popov, S., Vujanic, G., et al. (2014). Methylome analysis identifies a Wilms tumor epigenetic biomarker detectable in blood. Genome Biology, 15(8), 434. https://doi.org/10.1186/s13059-014-0434-y.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Liu, W., Chen, S., & Liu, B. (2016). Diagnostic and prognostic values of serum exosomal microRNA-21 in children with hepatoblastoma: a Chinese population-based study. Pediatric Surgery International, 32(11), 1059–1065. https://doi.org/10.1007/s00383-016-3960-8.

    Article  PubMed  Google Scholar 

  182. Jiao, C., Jiao, X., Zhu, A., Ge, J., & Xu, X. (2017). Exosomal miR-34s panel as potential novel diagnostic and prognostic biomarker in patients with hepatoblastoma. Journal of Pediatric Surgery, 52(4), 618–624. https://doi.org/10.1016/j.jpedsurg.2016.09.070.

    Article  PubMed  Google Scholar 

  183. Gerson, J. M., Schlesinger, H. R., Sereni, P., Moorhead, P. S., & Hummeler, K. (1977). Isolation and characterization of a neuroblastoma cell line from peripheral blood in a patient with disseminated disease. Cancer, 39(6), 2508–2512. https://doi.org/10.1002/1097-0142(197706)39:6<2508::aid-cncr2820390630>3.0.co;2-x.

    Article  CAS  PubMed  Google Scholar 

  184. Pelkey, T. J., Frierson Jr., H. F., & Bruns, D. E. (1996). Molecular and immunological detection of circulating tumor cells and micrometastases from solid tumors. Clinical Chemistry, 42(9), 1369–1381.

    Article  CAS  PubMed  Google Scholar 

  185. Kreissman, S. G., Seeger, R. C., Matthay, K. K., London, W. B., Sposto, R., Grupp, S. A., et al. (2013). Purged versus non-purged peripheral blood stem-cell transplantation for high-risk neuroblastoma (COG A3973): a randomised phase 3 trial. The Lancet Oncology, 14(10), 999–1008. https://doi.org/10.1016/S1470-2045(13)70309-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Miyajima, Y., Kato, K., Numata, S., Kudo, K., & Horibe, K. (1995). Detection of neuroblastoma cells in bone marrow and peripheral blood at diagnosis by the reverse transcriptase-polymerase chain reaction for tyrosine hydroxylase mRNA. Cancer, 75(11), 2757–2761. https://doi.org/10.1002/1097-0142(19950601)75:11<2757::aid-cncr2820751120>3.0.co;2-s.

    Article  CAS  PubMed  Google Scholar 

  187. Miyajima, Y., Horibe, K., Fukuda, M., Matsumoto, K., Numata, S., Mori, H., et al. (1996). Sequential detection of tumor cells in the peripheral blood and bone marrow of patients with stage IV neuroblastoma by the reverse transcription-polymerase chain reaction for tyrosine hydroxylase mRNA. Cancer, 77(6), 1214–1219. https://doi.org/10.1002/(sici)1097-0142(19960315)77:6<1214::aid-cncr31>3.0.co;2-2.

    Article  CAS  PubMed  Google Scholar 

  188. Uemura, S., Ishida, T., Thwin, K. K. M., Yamamoto, N., Tamura, A., Kishimoto, K., et al. (2019). Dynamics of Minimal Residual Disease in Neuroblastoma Patients. Frontiers in Oncology, 9, 455. https://doi.org/10.3389/fonc.2019.00455.

    Article  PubMed  PubMed Central  Google Scholar 

  189. Viprey, V. F., Corrias, M. V., Kagedal, B., Oltra, S., Swerts, K., Vicha, A., et al. (2007). Standardisation of operating procedures for the detection of minimal disease by QRT-PCR in children with neuroblastoma: quality assurance on behalf of SIOPEN-R-NET. European Journal of Cancer, 43(2), 341–350. https://doi.org/10.1016/j.ejca.2006.08.007.

    Article  CAS  PubMed  Google Scholar 

  190. Schleiermacher, G., Mosseri, V., London, W. B., Maris, J. M., Brodeur, G. M., Attiyeh, E., et al. (2012). Segmental chromosomal alterations have prognostic impact in neuroblastoma: a report from the INRG project. British Journal of Cancer, 107(8), 1418–1422. https://doi.org/10.1038/bjc.2012.375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Pinto, N., Mayfield, J. R., Raca, G., Applebaum, M. A., Chlenski, A., Sukhanova, M., et al. (2016). Segmental Chromosomal Aberrations in Localized Neuroblastoma Can be Detected in Formalin-Fixed Paraffin-Embedded Tissue Samples and Are Associated With Recurrence. Pediatric Blood & Cancer, 63(6), 1019–1023. https://doi.org/10.1002/pbc.25934.

    Article  CAS  Google Scholar 

  192. Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H. E., & Bishop, J. M. (1984). Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science, 224(4653), 1121–1124.

    Article  CAS  PubMed  Google Scholar 

  193. Pugh, T. J., Morozova, O., Attiyeh, E. F., Asgharzadeh, S., Wei, J. S., Auclair, D., et al. (2013). The genetic landscape of high-risk neuroblastoma. Nature Genetics, 45(3), 279–284. https://doi.org/10.1038/ng.2529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Durinck, K., & Speleman, F. (2018). Epigenetic regulation of neuroblastoma development. Cell and Tissue Research, 372(2), 309–324. https://doi.org/10.1007/s00441-017-2773-y.

    Article  CAS  PubMed  Google Scholar 

  195. Brodeur, G. M., & Bagatell, R. (2014). Mechanisms of neuroblastoma regression. Nature Reviews. Clinical Oncology, 11(12), 704–713. https://doi.org/10.1038/nrclinonc.2014.168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Applebaum, M. A., Barr, E. K., Karpus, J., Nie, J., Zhang, Z., Armstrong, A. E., et al. (2019). 5-Hydroxymethylcytosine Profiles Are Prognostic of Outcome in Neuroblastoma and Reveal Transcriptional Networks That Correlate With Tumor Phenotype. JCO Precision Oncology, (3), 1–12. https://doi.org/10.1200/PO.18.00402.

  197. van Groningen, T., Koster, J., Valentijn, L. J., Zwijnenburg, D. A., Akogul, N., Hasselt, N. E., et al. (2017). Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nature Genetics, 49(8), 1261–1266. https://doi.org/10.1038/ng.3899.

    Article  CAS  PubMed  Google Scholar 

  198. Ostler, K. R., Yang, Q., Looney, T. J., Zhang, L., Vasanthakumar, A., Tian, Y., et al. (2012). Truncated DNMT3B isoform DNMT3B7 suppresses growth, induces differentiation, and alters DNA methylation in human neuroblastoma. Cancer Research, 72(18), 4714–4723. https://doi.org/10.1158/0008-5472.CAN-12-0886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Yang, Q., Kiernan, C. M., Tian, Y., Salwen, H. R., Chlenski, A., Brumback, B. A., et al. (2007). Methylation of CASP8, DCR2, and HIN-1 in neuroblastoma is associated with poor outcome. Clinical Cancer Research, 13(11), 3191–3197. https://doi.org/10.1158/1078-0432.CCR-06-2846.

    Article  CAS  PubMed  Google Scholar 

  200. Lu, Z., Tian, Y., Salwen, H. R., Chlenski, A., Godley, L. A., Raj, J. U., et al. (2013). Histone-lysine methyltransferase EHMT2 is involved in proliferation, apoptosis, cell invasion, and DNA methylation of human neuroblastoma cells. Anti-Cancer Drugs, 24(5), 484–493. https://doi.org/10.1097/CAD.0b013e32835ffdbb.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Decock, A., Ongenaert, M., Van Criekinge, W., Speleman, F., & Vandesompele, J. (2016). DNA methylation profiling of primary neuroblastoma tumors using methyl-CpG-binding domain sequencing. Scientific Data, 3, 160004. https://doi.org/10.1038/sdata.2016.4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Olsson, M., Beck, S., Kogner, P., Martinsson, T., & Caren, H. (2016). Genome-wide methylation profiling identifies novel methylated genes in neuroblastoma tumors. Epigenetics, 11(1), 74–84. https://doi.org/10.1080/15592294.2016.1138195.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Decock, A., Ongenaert, M., Cannoodt, R., Verniers, K., De Wilde, B., Laureys, G., et al. (2016). Methyl-CpG-binding domain sequencing reveals a prognostic methylation signature in neuroblastoma. Oncotarget, 7(2), 1960–1972. https://doi.org/10.18632/oncotarget.6477.

    Article  PubMed  Google Scholar 

  204. Applebaum, M., Barr, E., Karpus, J., West-Szymanski, D., Zhang, W., Salwen, H., et al. 5-Hydroxymethylcytosine (5HMC) Profiles of Cell-Free DNA (CFDNA): novel Liquid Biopsy Biomarkers for Children with Neuroblastoma. In Pediatric blood & cancer, 2019 (Vol. 66, pp. S318–S318). Hoboken: Wiley.

  205. Burningham, Z., Hashibe, M., Spector, L., & Schiffman, J. D. (2012). The epidemiology of sarcoma. Clinical Sarcoma Research, 2(1), 14. https://doi.org/10.1186/2045-3329-2-14.

    Article  PubMed  PubMed Central  Google Scholar 

  206. Reed, D. R., Hayashi, M., Wagner, L., Binitie, O., Steppan, D. A., Brohl, A. S., et al. (2017). Treatment pathway of bone sarcoma in children, adolescents, and young adults. Cancer, 123(12), 2206–2218. https://doi.org/10.1002/cncr.30589.

    Article  PubMed  Google Scholar 

  207. McBride, D. J., Orpana, A. K., Sotiriou, C., Joensuu, H., Stephens, P. J., Mudie, L. J., et al. (2010). Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes, Chromosomes & Cancer, 49(11), 1062–1069. https://doi.org/10.1002/gcc.20815.

    Article  CAS  Google Scholar 

  208. Vo, K. T., Edwards, J. V., Epling, C. L., Sinclair, E., Hawkins, D. S., Grier, H. E., et al. (2016). Impact of Two Measures of Micrometastatic Disease on Clinical Outcomes in Patients with Newly Diagnosed Ewing Sarcoma: a Report from the Children's Oncology Group. Clinical Cancer Research, 22(14), 3643–3650. https://doi.org/10.1158/1078-0432.CCR-15-2516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Irtan, S., Ehrlich, P. F., & Pritchard-Jones, K. (2016). Wilms tumor: "State-of-the-art" update, 2016. Seminars in Pediatric Surgery, 25(5), 250–256. https://doi.org/10.1053/j.sempedsurg.2016.09.003.

    Article  PubMed  Google Scholar 

  210. Brioude, F., Lacoste, A., Netchine, I., Vazquez, M. P., Auber, F., Audry, G., et al. (2013). Beckwith-Wiedemann syndrome: growth pattern and tumor risk according to molecular mechanism, and guidelines for tumor surveillance. Hormone Research in Pædiatrics, 80(6), 457–465. https://doi.org/10.1159/000355544.

    Article  CAS  PubMed  Google Scholar 

  211. Bisogno, G., De Salvo, G. L., Bergeron, C., Gallego Melcon, S., Merks, J. H., Kelsey, A., et al. (2019). Vinorelbine and continuous low-dose cyclophosphamide as maintenance chemotherapy in patients with high-risk rhabdomyosarcoma (RMS 2005): a multicentre, open-label, randomised, phase 3 trial. The Lancet Oncology, 20(11), 1566–1575. https://doi.org/10.1016/S1470-2045(19)30617-5.

    Article  CAS  PubMed  Google Scholar 

  212. Parikh, A. R., Leshchiner, I., Elagina, L., Goyal, L., Levovitz, C., Siravegna, G., et al. (2019). Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nature Medicine, 25(9), 1415–1421. https://doi.org/10.1038/s41591-019-0561-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

MAA is supported by the NIH Grant Number and K08CA226237. The contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Applebaum.

Ethics declarations

Conflict of interest

CH is a shareholder of Shanghai Epican Genetech Co. Ltd. that licensed 5hmC-Seal from The University of Chicago. CH is a scientific founder and scientific advisory board member of Accent Therapeutics, Inc.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Daniel A. Weiser, Diana C. West-Szymanski and Ellen Fraint Denotes co-first authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weiser, D.A., West-Szymanski, D.C., Fraint, E. et al. Progress toward liquid biopsies in pediatric solid tumors. Cancer Metastasis Rev 38, 553–571 (2019). https://doi.org/10.1007/s10555-019-09825-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-019-09825-1

Keywords

Navigation