Skip to main content

Cancer-Linked DNA Hypomethylation and Its Relationship to Hypermethylation

  • Chapter
DNA Methylation: Development, Genetic Disease and Cancer

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 310))

Abstract

It is not surprising that cancer, a kind of derangement of development, hijacks DNA methylation, which is necessary for normal mammalian embryogenesis. Both decreases and increases in DNA methylation are a frequent characteristic of a wide variety of cancers. There is often more hypomethylation than hypermethylation of DNAduring carcinogenesis, leading to a net decrease in the genomic 5-methylcytosine content. Although the exactmethylation changes between different cancers of the same type are not the same, there are cancer type-specific differences in the frequency of hypermethylation or hypomethylation of certain genomic sequences. These opposite types of DNA methylation changes appear to be mostly independent of one another, although they may arise because of a similar abnormality leading to long-lasting epigenetic instability in cancers. Both tandem and interspersed DNA repeats often exhibit cancer-associated hypomethylation. However, one of these repeated sequences (NBL2) displayed predominant increases in methylation in some ovarian carcinomas and Wilms tumors and decreases in others. Furthermore, decreases and increases in CpG methylation can be interspersed within a small subregion of the 1.4-kb repeat unit of these tandem arrays. While the transcription-silencing role of DNA hypermethylation at promoters of many tumor-suppressor genes is clear, the biological effects of cancer-linked hypomethylation of genomic DNA are less well understood. Evidence suggests that DNA hypomethylation functions in direct or indirect control of transcription and in destabilizing chromosomal integrity. Recent studies of cancer-linked DNA hypomethylation indicate that changes to DNA methylation during tumorigenesis and tumor progression have a previously underestimated plasticity and dynamic nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcobia I, Quina AS, Neves H, Clode N, Parreira L (2003) The spatial organization of centromeric heterochromatin during normal human lymphopoiesis: evidence for ontogenetically determined spatial patterns. Exp Cell Res 290:358–369

    Article  PubMed  CAS  Google Scholar 

  • Anonymous (1985) Biochemistry and biology of DNA methylation. Proceedings of a Fogarty International Center Conference. Bethesda, Maryland, April 17–19, 1985. Prog Clin Biol Res 198:1–324

    Google Scholar 

  • Attwood JT, Yung RL, Richardson BC (2002) DNA methylation and the regulation of gene transcription. Cell Mol Life Sci 59:241–257

    Article  PubMed  CAS  Google Scholar 

  • Bachman KE, Rountree MR, Baylin SB (2001) Dnmt3a and Dnmt3b are transcriptional repressors that exhibit unique localization properties to heterochromatin. J Biol Chem 276:32282

    Article  PubMed  CAS  Google Scholar 

  • Barbeyron T, Kean K, Forterre P (1984) DNA adenine methylation of GTC sequences appeared recently in the Escherichia coli lineage. J Bacteriol 160:586–590

    PubMed  CAS  Google Scholar 

  • Bariol C, Suter C, Cheong K, Ku SL, Meaghr A, Hawkins N, Ward R (2003) The relationship between hypomethylation and CpG island methylation in colorectal neoplasia. Am J Pathol 162:1361–1371

    PubMed  CAS  Google Scholar 

  • Baylin SB, Herman JG (2000) Epigenetics and loss of gene function in cancer. In: Ehrlich M (ed) DNA and alterations in cancer: genetic and epigenetic alterations. Eaton Publishing, Natick, pp 293–309

    Google Scholar 

  • Baylin SB, Hoppener JW, de Bustros A, Steenbergh PH, Lips CJ, Nelkin BD (1986) DNA methylation patterns of the calcitonin gene in human lung cancers and lymphomas. Cancer Res 46:29172922

    Google Scholar 

  • Beard C, Li E, Jaenisch R (1995) Loss of methylation activates Xist in somatic but not in embryonic cells. Genes Dev 9:2325–2334

    PubMed  CAS  Google Scholar 

  • Biniszkiewicz D, Gribnau J, Ramsahoye B, Gaudet F, Eggan K, Humpherys D, Mastrangelo MA, Jun Z, Walter J, Jaenisch R (2002) Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol Cell Biol 22:2124–2135

    Article  PubMed  CAS  Google Scholar 

  • Bird AP (1984) DNA methylation—how important in gene control? Nature 307:503–504

    Article  PubMed  CAS  Google Scholar 

  • Bozhenok L, Wade PA, Varga-Weisz P (2002) WSTF-ISWI chromatin remodeling complex targets heterochromatic replication foci. EMBO J 21:2231–2241

    Article  PubMed  CAS  Google Scholar 

  • Brabender J, Usadel H, Danenberg KD, Metzger R, Schneider PM, Lord RV, Wickramasinghe K, Lum CE, Park J, Salonge D, Singer J, Sidransky D, Holscher AH, Meltzer SJ Danenberg PV (2001) Adenomatous polyposis coli gene promoter hypermethylation in non-small cell lung cancer is associated with survival. Oncogene 20:3528–3532

    Article  PubMed  CAS  Google Scholar 

  • Bruniquel D, Schwartz RH (2003) Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol 4:235–240

    Article  PubMed  CAS  Google Scholar 

  • Cairns BR (2001) Emerging roles for chromatin remodeling in cancer biology. Trends Cell Biol 11:S15–21

    PubMed  CAS  Google Scholar 

  • Cammas F, Oulad-Abdelghani M, Vonesch JL, Huss-Garcia Y, Chambon P, Losson R (2002) Cell differentiation induces TIF1 beta association with centromeric heterochromatin via an HP1 interaction. J Cell Sci 115:3439–3448

    PubMed  CAS  Google Scholar 

  • Carr BI, Reilly G, Smith SS, Winberg C, Riggs A (1984) The tumorigenicity of 5-azacytidine in the male Fischer rat. Carcinogenesis 5:1583–1590

    PubMed  CAS  Google Scholar 

  • Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395:89–93

    Article  PubMed  CAS  Google Scholar 

  • Cheng CW, Wu PE, Yu JC, Huang CS, Yue CT, Wu CW, Shen CY (2001) Mechanisms of inactivation of E-cadherin in breast carcinoma: modification of the two-hit hypothesis of tumor suppressor gene. Oncogene 20:3814–3823

    Article  PubMed  CAS  Google Scholar 

  • Cheng P, Schmutte C, Cofer KF, Felix JC, Yu MC, Dubeau L (1997) Alterations in DNA methylation are early, but not initial, events in ovarian tumorigenesis. Br J Cancer 75:396–402

    PubMed  CAS  Google Scholar 

  • Constantinides PG, Jones PA, Gevers W (1977) Functional striated muscle cells from non-myoblast precursors following 5-azacytidine treatment. Nature 267:364–366

    Article  PubMed  CAS  Google Scholar 

  • Cooper DN (1983) Eukaryotic DNA methylation. Hum Genet 64:315–333

    Article  PubMed  CAS  Google Scholar 

  • Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP, Gao X, Wright FA, Feramisco JD, Peltomaki P, Lang JC, Schuller DE, Yu L, Bloomfield CD, Caligiuri MA, Yates A, Nishikawa R, Su Huang H, Petrelli NJ, Zhang X, O’Dorisio MS, Held WA, Cavenee WK, Plass C (2000) Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24:132–138

    Article  PubMed  CAS  Google Scholar 

  • Craig JM, Earle E, Canham P, Wong LH, Anderson M, Choo KH (2003) Analysis of mammalian proteins involved in chromatin modification reveals new metaphase centromeric proteins and distinct chromosomal distribution patterns. Hum Mol Genet 12:3109–3121

    Article  PubMed  CAS  Google Scholar 

  • Cusack SM, Rohn TT, Medeck RJ, Irwin KM, Brown RJ, Mercer LM, Oxford JT (2004) Suppression of MeCP2beta expression inhibits neurite extenson in PC12 cells. Exp Cell Res 299:442–453

    Article  PubMed  CAS  Google Scholar 

  • Datta J, Ghoshal K, Sharma SM, Tajima S, Jacob ST (2003) Biochemical fractionation reveals association of DNA methyltransferase (Dnmt) 3b with Dnmt 1 and that of Dnmt 3a with a histone H3 methyltransferase and Hdac 1. J Cell Biochem 88:855–864

    Article  PubMed  CAS  Google Scholar 

  • De Smet C, De Backer O, Faraoni I, Lurquin C, Brasseur F, Boon T (1996) The activation of human gene MAGE-1 in tumor cells is correlated with genome wide demethylation. Proc Natl Acad Sci USA 93:7149–7153

    Article  PubMed  Google Scholar 

  • Denda A, Rao PM, Rajalakshmi S, Sarma DS (1985) 5-Azacyidine potentiates initiation induced by carcinogens in rat liver. Carcinogenesis 6:145146

    Google Scholar 

  • Denegri M, Moralli D, Rocchi M, Biggiogera M, Raimondi E, Cobianchi F, De Carli L, Riva S, Biamonti G (2002) Human chromosomes 9, 12, and 15 contain the nucleation sites of stress-induced nuclear bodies. Mol Biol Cell 13:2069–2079

    Article  PubMed  CAS  Google Scholar 

  • Dennis K, Fan T, Geiman T, Yan Q, Muegge K (2001) Lsh, amember of the SNF2 family, is required for genome-wide methylation. Genes Dev 15:2940–2944

    Article  PubMed  CAS  Google Scholar 

  • Doerfler W (1984) DNA-Methylierung: Geninaktivierung durch sequenzspezifische DNA Methylierungen. Angew Chem Weinheim Bergstr Ger 23:919–929

    Google Scholar 

  • Eads CA, Nickel AE, Laird PW (2002) Complete genetic suppression of polyp formation and reduction of CpG-island hypermethylation in Apc(Min/+) Dnmt 1-hypomorphic mice. Cancer Res 62:1296–1299

    PubMed  CAS  Google Scholar 

  • Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich M (2000) DNA hypomethylation and cancer. In: Ehrlich M (ed) DNA and alterations in cancer: genetic and epigenetic alterations. Eaton Publishing, Natick, pp 273–291

    Google Scholar 

  • Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich M(2003) Expression of various genes is controlled by DNA methylation during mammalian development. J Cell Biochem 88:899–910

    Google Scholar 

  • Ehrlich M, Ehrlich KC (1993) Effect of DNA methylation on the binding of vertebrate and plant proteins to DNA. In: Jost JP, Saluz HP (eds) DNA methylation: biological significance. Birkhauser Verlag, Boston, pp 145–168

    Google Scholar 

  • Ehrlich M, Wang RY (1981) 5-Methylcytosine in eukaryotic DNA. Science 212:1350–1357

    PubMed  CAS  Google Scholar 

  • Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, McCune RA, Gehrke C (1982) Amount and distribution of 5-methylcytosine in human DNA fromdifferent types of tissues of cells. Nucleic Acids Res 10:2709–2721

    PubMed  CAS  Google Scholar 

  • Ehrlich M, Gama-Sosa MA, Carreira LH, Ljungdahl LG, Kuo KC (1985) DNA methylation in thermophilic bacteria: N4-methylcytosine, 5-methylcytosine, and N6-methyladenine. Nucleic Acids Res 13:1399–1412

    PubMed  CAS  Google Scholar 

  • Ehrlich M, Buchanan KL, Tsien F, Jiang G, Sun B, Uicker W, Weemaes CM, Smeets D, Sperling K, Belohradsky BH, Tommerup N, Misek DE, Rouillard JM, Kuick R, Hanash SM (2001) DNA methyltransferase 3B mutations linked to the ICF syndrome causedysregulationof lymphogenesis genes. Hum Mol Genet 10:2917–2931

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich M, Jiang G, Fiala E, Dome JS, Yu MC, Long TI, Youn B, Sohn OS, Widschwendter M, Tomlinson GE, Chintagumpala M, Champagne M, Parham D, Liang G, Malik K, Laird PW (2002) Hypomethylation and hypermethylation of DNA in Wilms tumors. Oncogene 21:6694–6702

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich M, Hopkins NE, Jiang G, Dome JS, Yu MC, Woods CB, Tomlinson GE, Chintagumpala NM, Champagne M, Dillerg L, Parham DM, Sawyer J (2003) Satellite DNA hypomethylation in karyotyped Wilms tumors. Cancer Genet Cytogenet 141:97–105

    Article  PubMed  CAS  Google Scholar 

  • Ehrlich M, Woods C, Yu M, Dubeau L, Yang F, Campan M, Weisenberger D, Long T, Youn B, Fiala E, Laird P (2006) Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA in ovarian tumors. Oncogene Mar 13; (Epub ahead of print)

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983a) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983b) Hypomethylation of ras oncogenes in primary human cancers. Biochem Biophys Res Commun 111:47–54

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Cui H, Ohlsson R (2002) DNA methylation and genomic imprinting: insights from cancer into epigenetic mechanisms. Semin Cancer Biol 12:389–398

    Article  PubMed  CAS  Google Scholar 

  • Florl AR, Lower R, Schmitz-Drager BJ, Schulz WA (1999) DNA methylation and expression of LINE-1 and HERV-K provirus sequences in urothelial and renal cell carcinomas. Br J Cancer 80:1312–1321

    Article  PubMed  CAS  Google Scholar 

  • Fuks F, Burgers WA, Godin N, Kasai M, Kouzarides T(2001) Dnmt3a binds deacetylases and is recruited by a sequence-specific repressor to silence transcription. EMBO J 20:2536

    Article  PubMed  CAS  Google Scholar 

  • Fuks F, Hurd PJ, Deplus R, Kouzarides T (2003a) The DNA methyltransferases associate with HP1 and the SUV39H1histone methyltransferase. Nucleic Acids Res 31:2305–2312

    Article  PubMed  CAS  Google Scholar 

  • Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T (2003b) The methyl-CpC-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278:4035–4040

    Article  PubMed  CAS  Google Scholar 

  • Gama-Sosa MA, Midgett SM, Slagel VA, Githens S, Kuo KC, Gehrke CW, Ehrlich M (1983a) Tissue-specific differences in DNA methylation in various mammals. Biochim Biophys Acta 740:212–219

    PubMed  CAS  Google Scholar 

  • Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, Ehrlich M (1983b) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11:6883–6895

    PubMed  CAS  Google Scholar 

  • Gasser SM (2001) Positions of potential: nuclear organization and gene expression. Cell 104:639–642

    Article  PubMed  CAS  Google Scholar 

  • Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R (2003) Induction of tumors in mice by genomic hypomethylation. Science 300:489–492

    Article  PubMed  CAS  Google Scholar 

  • Geiman TM, Sankpal UT, Robertson AK, Chen Y, Mazumdar M, Heale JT, Schmiesing JA, Kim W, Yokomori K, Zhao Y, Robertson KD (2004) Isolation and characterization of a novel DNA methyltransferase complex linking DNMT3B with components of the mitotic chromosome condensation machinery. Nucleic Acids Res 32:2716–2729

    Article  PubMed  CAS  Google Scholar 

  • Geyer CB, Kiefer CM, Yang TP, McCarrey JR (2004) Ontogeny of a demethylation domain and its relationship to activation of tissue-specific transcription. Biol Reprod 71:837–844

    Article  PubMed  CAS  Google Scholar 

  • Gibbons RJ, McDowell TL, Raman S, O’Rourke DM, Garrick D, Ayyub H, Higgs DR (2000) Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nat Genet 24:368–371

    Article  PubMed  CAS  Google Scholar 

  • Gisselsson D, Shao C, Tuck-Muller C, Sogorovic S, Palsson E, Smeets D, Ehrlich M (2005) Interphase chromosomal abnormalities and mitotic missegregation of hypomethylated sequences in ICF syndrome cells. Chromosoma 114:118–126

    Article  PubMed  CAS  Google Scholar 

  • Gowher H, Jeltsch A (2002) Molecular enzymology of the catalytic domains of the Dnmt3A and Dnmt3b DNA methyltransferases. J Biol Chem 277:20409–20414

    Article  PubMed  CAS  Google Scholar 

  • Gowher H, Leismann O, Jeltsch A (2000) DNA of Drosophila melanogaster contains 5-metylcytosine. EMBO J 19:6918–6923

    Article  PubMed  CAS  Google Scholar 

  • Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK, Weemaes CM, Gartler SM (1999) The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci USA 96:14412–14417

    Article  PubMed  CAS  Google Scholar 

  • Heard E (2004) Recent advances in X-chromosome inactivation. Curr Opin Cell Biol 16:247–255

    Article  PubMed  CAS  Google Scholar 

  • Heard E, Clerc P, Avner P (1997) X-chromosome inactivation in mammals. Annu Rev Genet 31:571–610

    Article  PubMed  CAS  Google Scholar 

  • Hernandez R, Frady A, Zhang XY, Varela M, Ehrlich M (1997) Preferential induction of chromosome 1 multibranched figures and whole-arm deletions in a human proB cell line treated with 5-azacytidine or 5-azadeoxycytudube. Cytogenet Cell Genet 76:196–201

    Article  PubMed  CAS  Google Scholar 

  • Howell CY, Bestor TH, Ding F, Latham KE, Mertineit C, Trasler JM, Chaillet JR (2001) Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104:829–838

    Article  PubMed  CAS  Google Scholar 

  • Huang LH, Wang R, Gama-Sosa MA, Shenoy S, Ehrlich M (1984) A protein from human placental nuclei binds preferentially to 5-methylcytosine-rich DNA. Nature 308:293–295

    Article  PubMed  CAS  Google Scholar 

  • Huang YM, Chen SU, Goodman SD, Wu SH, Kao JT, Lee CN, Cheng WC, Tsai KS, Fang WH (2004) Interaction of nick-directed DNA mismatch repair and loop repair in human cells. J Biol Chem 279:30228–30235

    Article  PubMed  CAS  Google Scholar 

  • Itano O, Ueda M, Kikuchi K, Hashimoto O, Hayatsu S, Kawaguchi M, Seki H, Aiura K, Kitajima M (2002) Correlation of postoperative recurrence in hepatocellular carcinoma with demethylation of repetitive sequences. Oncogene 21:789–797

    Article  PubMed  CAS  Google Scholar 

  • Iwano H, Nakamura M, Tajima S (2004) Xenopus MBD3 plays a crucial role in an early stage of development. Dev Biol 268:416–428

    Article  PubMed  CAS  Google Scholar 

  • Jackson K, Yu MC, Arakawa K, Fiala E, Youn B, Fiegl H, Muller-Holzner E, Widschwendter M, Ehrlich M (2004) DNA hypomethylation is prevalent even in low-grade breast cancers. Cancer Biol Ther 3:1225–1231

    Article  PubMed  CAS  Google Scholar 

  • Jackson-Grusby L, Laird PW, Magge SN, Moeller BJ, Jaenisch R (1997) Mutagenicity of 5-aza-2′-deoxycytidine is mediated by the mammalian DNA methyltransferase. Proc Natl Acad Sci USA 94:4681–4685

    Article  PubMed  CAS  Google Scholar 

  • Jeanpierre M, Turleau C, Aurias A, Prieur M, Ledeist F, Fischer A, Viegas-Pequinot E (1993) An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum Mol Genet 2:731–735

    PubMed  CAS  Google Scholar 

  • Ji W, Hernandez R, Zhang XY, Qu GZ, Frady A, Varrela M, Ehrlich M (1997) DNA demethylation and pericentromeric rearrangements of chromosome 1. Mutat Res 379:33–41

    PubMed  CAS  Google Scholar 

  • Jolly C, Metz A, Govin J, Vigneron M, Turner BM, Khochbin S, Vourch C (2004) Stress-induced transcription of satellite III repeats. J Cell Biol 164:25–33

    Article  PubMed  CAS  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  PubMed  CAS  Google Scholar 

  • Juttermann R, Li E, Jaenisch R (1994) Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc Natl Acad Sci USA 91:11797–11801

    Article  PubMed  CAS  Google Scholar 

  • Kaneda A, Tsukamoto T, Takamura-Enya T, Watanabe N, Kaminishi M, Sugimura T, Tatematsu M, Ushijima T (2004) Frequent hypomethylation in multiple promoter CpG islands is associated with global hypomethylation, but nor with frequent promoter hypermethylation. Cancer Sci 95:58–64

    Article  PubMed  CAS  Google Scholar 

  • Kim GD, Ni J, Kelesoglu N, Roberts RJ, Pradhan S (2002) Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. EMBO J 21:4183

    Article  PubMed  CAS  Google Scholar 

  • Kim YI, Giuliano A, Hatch KD, Schneider A, Nour MA, Dallal GE, Selhub J, Mason JB (1994) Global DNA hypomethylation increases progressively in cervical dysplasia and carcinoma. Cancer 74:893–899

    Article  PubMed  CAS  Google Scholar 

  • Klochendler-Yeivin A, Muchardt C, Yaniv M (2002) SWI/SBF chromatin remodeling and cancer. Curr Opin Genet Dev 12:73–79

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Bobek MP, Kuick R, Lamb B, Zhu X, Narayan A, Bourchis D, Viegas-Pequignot E, Ehrlich M, Hanash SM (2000) Whole-genome methylation scan in ICF syndrome: hypomethylation of non-satellite DNA repeats D4Z4 and NBL2. Hum Mol Genet 9:597–604

    Article  PubMed  CAS  Google Scholar 

  • Kosak ST, Skok JA, Medina KL, Riblet R, Le Beau MM, Fisher AG, Singh H (2002) Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296:158–162

    Article  PubMed  CAS  Google Scholar 

  • Kunert N, Marhold J, Stanke J, Stach D, Lyko F (2003) A Dnmt2-like protein mediates DNA methylation in Drosophila. Development 130:5083–5090

    Article  PubMed  CAS  Google Scholar 

  • Lacks SA, Dunn JJ, Greenberg B (1982) Identification of base mismatches recognized by the heteroduplex-DNA-repair system of Streptococcus pneumoniae. Cell 31:327–336

    Article  PubMed  CAS  Google Scholar 

  • Laird CD, Pleasant ND, Clrk AD, Sneeden JL, Hassan KM, Manley NC, Vary JC Jr, Morgan T, Hansen RS, Stoger R (2004) Hairpin-bisulfite PCR: assessing epigenetic methylation patterns on complementary strands of individual DNA molecules. Proc Natl Acad Sci USA 101:204–209

    Article  PubMed  CAS  Google Scholar 

  • Langle-Rouault F, Maenhaut-Michel G, Radman M (1987) GATC sequences, DNA nicks and the MutH function in Escherichia coli mismatch repair. EMBO J 6:1121–1127

    PubMed  CAS  Google Scholar 

  • Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, Perez-Melgosa M, Sweetser MT Schlissel MS, Nguyen S, Cherry SR, Tsai JH, Tucker SM, Weaver WM, Kelso A, Jaenisch R, Wilson CB (2001) A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15:763–774

    Article  PubMed  CAS  Google Scholar 

  • Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926

    Article  PubMed  CAS  Google Scholar 

  • Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA, Li E, Laird PW, Jones PA (2002) Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol Cell Biol 22:480–491

    Article  PubMed  CAS  Google Scholar 

  • Lin CH, Hsieh SY, Sheen IS, Lee WC, Chen TC, Shyu WC, Liaw YF (2001) Genome-wide hypomethylation in hepatocellular carcinogenesis. Cancer Res 61:4238–4243

    PubMed  CAS  Google Scholar 

  • Lyko F, Ramsahoye BH, Jaenisch R (2000) DNA methylation in Drosophila melanogaster. Nature 408:538–540

    Article  PubMed  CAS  Google Scholar 

  • Maier H, Colbert J, Fitzsimmons D, Clark DR, Hagman J (2003) Activation of the early B-cell-specific mb-1 (Ig-alpha) gene by Pax-5 is dependent on an unmethylated Ets binding site. Mol Cell Biol 23:1946–1960

    Article  PubMed  CAS  Google Scholar 

  • Makar KW, Perez-Melgosa M, Shnyreva M, Weaver WM, Fitzpatrick DR, Wilson CB (2003) Active recruitment of DNA methyltransferases regulates interleukin 4 in thymocytes and T cells. Nat Immunol 4:1183–1190

    Article  PubMed  CAS  Google Scholar 

  • Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun YE (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302:890–893

    Article  PubMed  CAS  Google Scholar 

  • Mitelman F, Mertens F, Johansson B (1997) A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nat Genet 15 Spec No:417–474

    Article  PubMed  CAS  Google Scholar 

  • Moreau P, Mouillot G, Rousseau P, Marcou C, Dausset J, Carosella ED (2003) HLA-G gene repression is reversed by demethylation. Proc Natl Acad Sci USA 100:1191–1196

    Article  PubMed  CAS  Google Scholar 

  • Namihira M, Nakashima K, Taga T (2004) Developmental stage dependent regulation of DNA methylation and chromatin modification in a immature astrocyte specific gene promoter. FEBS Lett 572:184

    Article  PubMed  CAS  Google Scholar 

  • Nan X, Tate P, Li E, Bird A (1996) DNA methylation specifies chromosomal localization of MeCP2. Mol Cell Biol 16:414–421

    PubMed  CAS  Google Scholar 

  • Narayan A, Ji W, Zhang XY, Marrogi A, Graff JR, Baylin SB, Ehrlich M (1998) Hypomethylation of pericentromeric DNA in breast adenocarcinomas. Int J Cancer 77:833–838

    Article  PubMed  CAS  Google Scholar 

  • Nishino K, Hattori N, Tanaka S, Shiota K (2004) DNA methylation-mediated control of Sry gene expression inmouse gonadal development. J Biol Chem 279:22306–22313

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama R, Qu L, Tsumagari K, Dubeau L, Weissbecker K, Champagne M, Sikka S, Nagai H, Ehrlich MA (2005a) DNA repeat, NBL2, is hypermethylated in some cancers but hypomethylated in others. Cancer Biol Ther 4:440–448

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama R, Qi L, Lacey M, Ehrlich M (2005b) Both hypomethylation and hypermethylation in a 0.2-kb region of a DNA repeat in cancer. Mol Cancer Res 3:617–626

    Article  PubMed  CAS  Google Scholar 

  • Okada H, Kimura MT, Tan D, Fujiwara K, Igarashi J, Makuuchi M, Hui AM, Tsurumaru M, Nagase H (2005) Frequent trefoil factor 3 (TFF3) overexpression and promoter hypomethylation in mouse and human hepatocellular carcinomas. Int J Oncol 26:369–377

    PubMed  CAS  Google Scholar 

  • Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 98:247–257

    Article  Google Scholar 

  • Orend G, Kuhlmann I, Doerfler W (1991) Spreading of DNA methylation across integrated foreign (adenovirus type 12) genomes inmammalian cells. J Virol 65:4301–4308

    PubMed  CAS  Google Scholar 

  • Palmer BR, Marinus MG (1994) The dam and dcm strains of Escherichia coli—a review. Gene 143:1–12

    Article  PubMed  CAS  Google Scholar 

  • Panning B, Jaenisch R (1996) DNA hypomethylation can activate Xist expression and silence X-linked genes. Genes Dev 10:1991–2002

    PubMed  CAS  Google Scholar 

  • Plass C, Soloway PD (2002) DNA methylation, imprinting and cancer. Eur JHumGenet 10:6–16

    Article  CAS  Google Scholar 

  • Pradhan S, Esteve PO (2003) Mammalian DNA (cytosine-5) methyltransferases and their expression. Clin Immunol 109:6–16

    Article  PubMed  CAS  Google Scholar 

  • Qu G, Grundy PE, Narayan A, Ehrlich M (1999a) Frequent hypomethylation in Wilms tumors of pericentromeric DNA in chromosomes 1 and 16. Cancer Genet Cytogenet 109:34–39

    Article  PubMed  CAS  Google Scholar 

  • Qu G, Dubeau L, Narayan A, Yu M, Ehrlich M (1999b) Satellite DNA hypomethylation vs. overall genomic hypomethylation in ovarian epithelial tumors of different malignant potential. Mutat Res 423:91–101

    PubMed  CAS  Google Scholar 

  • Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW, Baylin SB, Vogelstein B (2002) DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature 416:552–556

    Article  PubMed  CAS  Google Scholar 

  • Riggs AD (1975) X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet 14:9–25

    PubMed  CAS  Google Scholar 

  • Riggs AD, Jones PA (1983) 5-methylcytosine, gene regulation, and cancer. Adv Cancer Res 40:1–30

    Article  PubMed  CAS  Google Scholar 

  • Romanov GA, Vanyushin BF (1981) Methylation of reiterated sequences in mammalian DNAs. Effects of the tissue type, age, malignancy and hormonal induction. Biochim Biophys Acta 653:204–218

    PubMed  CAS  Google Scholar 

  • Sabbattini P, Lundgren M, Georgiou A, Chow C, Warnes G, Dillon N (2001) Binding of Ikaros to the lambda5 promoter silences transcription through a mechanism that does not require heterochromatin formation. EMBO J 20:2812–2822

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H, Hirohashi S (2001) Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis. Hepatology 33:561–568

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Kanai Y, Sakamoto M, Saito H, Ishii H, Hirohashi S (2002) Overexpression of a splice variant of DNA methyltransferase 3b, DNMT4b4, associated with DNA hypomethylation on pericentromeric satellite regions during human hepatocarcinogenesis. Proc Natl Acad Sci USA 99:10060–10065

    Article  PubMed  CAS  Google Scholar 

  • Santourlidis S, Florl A, Ackermann R, Wirtz HC, Schulz WA (1999) High frequency of alterations in DNA methylation in adenocarcinoma of the prostate. Prostate 39:166–174

    Article  PubMed  CAS  Google Scholar 

  • Sato N, Maitra A, Fukushima N, van Heek NT, Matsubayashi H, Iacobuzio-Donahue CA, Rosty C, Goggins M (2003) Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adenocarcinoma. Cancer Res 63:4158–4166

    PubMed  CAS  Google Scholar 

  • Schulz WA, Elo JP, Florl AR, Pennanen S, Santourlidis S, Engers R, Buchardt M, Seifert HH, Visakorpi T (2002) Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer 35:58–65

    Article  PubMed  CAS  Google Scholar 

  • Singal R, van Wert JM (2001) De novo methylation of an embryonic globin gene during normal development is strand specific and spreads from the proximal transcribed region. Blood 98:3441–3446

    Article  PubMed  CAS  Google Scholar 

  • Soares J, Pinto AE, Cunha CV, Andre S, Barao I, Sousa JM, Cravo M (1999) Global DNA hypomethylation in breast carcinoma: correlation with prognostic factors and tumor progression. Cancer 85:112–118

    Article  PubMed  CAS  Google Scholar 

  • Strathdee G, Sim A, Brown R (2004) Control of gene expression by CpG island methylation in normal cells. Biochem Soc Trans 32:913–915

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Harashima A, Okochi A, Yamamoto M, Nakamura M, Nakamura S, Motoda R, Yamasaki F, Orita K (2004) 5-Azacytidine supports the long-term repopulating activity of cord blood CD34(+) cells. Am J Hematol 77:313–315

    Article  PubMed  CAS  Google Scholar 

  • Tagoh H, Schebesta A, Lefevre P, Wilson N, Hume D, Busslinger M, Bonifer C (2004) Epigenetic silencing of the c-fms locus during B-lymphopoiesis occurs in discrete steps and is reversible. EMBO J 23:4275–4285

    Article  PubMed  CAS  Google Scholar 

  • Tang QQ, Lane MD (1999) Activation and centromeric localization of CCAAT/enhancer-binding proteins during the mitotic clonal expansion of adipocyte differentiation. Genes Dev 13:2231–2241

    Article  PubMed  CAS  Google Scholar 

  • Taylor SM, Jones PA (1979) Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17:771–779

    Article  PubMed  CAS  Google Scholar 

  • Thomas GA, Williams ED (1992) Production of thyroid tumours in mice by demethylating agents. Carcinogenesis 13:1039–1042

    PubMed  CAS  Google Scholar 

  • Thoraval D, Asakawa J, Wimmer K, Kuick R, Lamb B, Richardson B, Ambros P, Glover T, Hanash S (1996) Demethylation of repetitive DNA sequences in neuroblastoma. Genes Chromosomes Cancer 17:234–244

    Article  PubMed  CAS  Google Scholar 

  • Tsuda H, Takarabe T, Kanai Y, Fukutomi T, Hirohashi S (2002) Correlation of DNA hypomethylation at pericentromeric regions of chromosomes 16 and 1 with histological features and chromosomal abnormalities of human breast carcinomas. Am J Pathol 161:859–866

    PubMed  CAS  Google Scholar 

  • Tsuji-Takayama K, Inoue T, Ijiri Y, Otani T, Motoda R, Nakamura S, Orita K (2004) Demethylating agent, 5-azacytidine, reverses differentiation of embryonic stem cells. Biochem Biophys Res Commun 323:86–90

    Article  PubMed  CAS  Google Scholar 

  • Tuck-Muller CM, Narayan A, Tsien F, Smets DF, Sayer J, Fiala ES, Sohn OS, Ehrlich M (2000) DNA methylation and unusual chromosome instability in cell lines from ICF syndrome patients. Cytogenet Cell Genet 89:121–128

    Article  PubMed  CAS  Google Scholar 

  • Turker MS (2002) Gene silencing in mammalian cells and the spread of DNA methylation. Oncogene 21:5388–5393

    Article  PubMed  CAS  Google Scholar 

  • Tycko B (2000) Genomic imprinting and human neoplasia. In: Ehrlich M (ed) DNA and alterations in cancer: genetic and epigenetic alterations. Eaton Publishing, Natick, pp 333–349

    Google Scholar 

  • Vanyushin BF, Tkacheva SG, Belozersky AN (1970) Rare bases in animal DNA. Nature 225:948–949

    Article  PubMed  CAS  Google Scholar 

  • Vanyushin BF, Nemirovsky LE, Klimenko VV, Vasiliev VK, Belozersky AN (1973) The 5-methylcytosine in DNA of rats. Tissue and age specificity and the changes induced by hydrocortisone and other agents. Gerontologia 19:138–152

    Article  PubMed  CAS  Google Scholar 

  • Wade PA (2001) Methyl CpG binding proteins: coupling chromatin architecture to gene regulation. Oncogene 20:3166–3173

    Article  PubMed  CAS  Google Scholar 

  • Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, Dymov S, Szyf M, Meaney MJ (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854

    Article  PubMed  CAS  Google Scholar 

  • Weisenberger DJ, Campan M, Long TI, Kim M, Woods C, Fiala E, Ehrlich M (2005) Analysis of repetitive element DNA methylation by MethyLight. Nucleic Acids Res 33:6823–6836

    Article  PubMed  CAS  Google Scholar 

  • Widschwendter M, Jiang G, Woods C, Muller HM, Fiegl H, Goebel G, Marth C, Muller-Holzner E, Zeimet AG, Laird PW, Ehrlich M (2004) DNA hypomethylation and ovarian cancer biology. Cancer Res 64:4472–4480

    Article  PubMed  CAS  Google Scholar 

  • Wong N, Lam WC, Lai PB, Pang E, Lau WY Johnson PJ (2001) Hypomethylation of chromosome 1 heterochromatin DNA correlates with q-arm copy gain in human hepatocellular carcinoma. Am J Pathol 159:465–471

    PubMed  CAS  Google Scholar 

  • Xin H, Yoon HG, Singh PB, Wong J, Qin J (2003) Components of a pathway maintaining histone modification and heterochromatin protein 1 binding at the pericentric heterochromatin in mammalian cells. J Biol Chem 279:9536–9546

    Google Scholar 

  • Xu GL, Bestor TH, Bourchis D, Hsieh CL, Tommerup N, Bugge M, Hulten M, Qu X, Russo JJ, Viegas-Pequignot E (1999) Chromosome instability and immunodeficiency syndrome caused by mutations in DNA methyltransferase gene. Nature 402:187–191

    Article  PubMed  CAS  Google Scholar 

  • Yamada Y, Jackson-Grusby L, Linhart H, Meissner A, Eden A, Lin H, Jaenisch R (2005) Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc Natl Acad Sci U S A 102:13580–13585

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto F, Yamamoto M, Soto JL, Kojima E, Wang EN, Perucho M (2001) NotI-MseII methylation-sensitive amplified fragment length polymorphism for DNA methylation analysis of human cancers. Electrophoresis 22:1946–1956

    Article  PubMed  CAS  Google Scholar 

  • Yan Q, Huang J, Fan T, Zhu H, Muegge K (2003) Lsh, amodulator of CpG methylation, is crucial for normal histone methylation. EMBO J 22:5154

    Article  PubMed  CAS  Google Scholar 

  • Ye L, Li X, Kong X, Wang W, Bi Y, Hu L, Cui B, Ning G (2005) Hypomethylation in the promoter region of POMC gene correlates with ectopic overexpression in thymic carcinoids. J Endocrinol 185:337–343

    Article  PubMed  CAS  Google Scholar 

  • Yung R, Ray D, Eisenbraun JK, Dengh C, Attwood J, Eisenbraun MD (2001) Unexpected effects of a heterozygous dnmt 1 null mutation on age-dependent DNA hypomethylation and autoimmunity. J Gerontol A Biol Sci Med Sci 56:B268–B276

    PubMed  CAS  Google Scholar 

  • Zhang XY, Jabrane-Ferrat N, Aiedu CK, Samac S, Peterlin BM, Ehrlich M (1993) The major histocompatibility complex class II promoter-binding protein RFX (NF-X) is a methylated DNA-binding protein. Mol Cell Biol 13:6810–6818

    PubMed  CAS  Google Scholar 

  • Zhu X, Leav I, Leung YK, Wu M, Liu Q, Gao Y, McNeal JE, Ho SM (2004) Dynamic regulation of estrogen receptor-beta expression by DNA methylation during prostate cancer development and metastasis. Am J Pathol 164:2003–2012

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ehrlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ehrlich, M. (2006). Cancer-Linked DNA Hypomethylation and Its Relationship to Hypermethylation. In: Doerfler, W., Böhm, P. (eds) DNA Methylation: Development, Genetic Disease and Cancer. Current Topics in Microbiology and Immunology, vol 310. Springer, Berlin, Heidelberg . https://doi.org/10.1007/3-540-31181-5_12

Download citation

Publish with us

Policies and ethics