Skip to main content
Log in

Role of imaging in diagnosis and management of left ventricular assist device complications

  • Review Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Heart failure is a clinical condition that is associated with significant morbidity and mortality. With the advent of left ventricular assist device (LVAD), an increasing number of patients have received an artificial heart both as a bridge-to-therapy and as a destination therapy. Clinical trials have shown clear survival benefits of LVAD implantation. However, the increased survival benefits and improved quality of life come at the expense of an increased complication rate. Common complications include perioperative bleeding, infection, device thrombosis, gastrointestinal bleeding, right heart failure, and aortic hemodynamic changes. The LVAD-associated complications have unique pathophysiology. Multiple imaging modalities can be employed to investigate the complications, including computed tomography (CT), positron emission tomography-computed tomography (PET-CT), catheter angiography and echocardiography. Imaging studies not only help ascertain diagnosis and evaluate the severity of disease, but also help direct relevant clinical management and predict prognosis. In this article, we aim to review the common LVAD complications, present the associated imaging features and discuss the role of imaging in their management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Roger VL et al (2011) Heart disease and stroke statistics-2011 update: a report from the American Heart Association. Circulation 123(4):e18–e209

    Article  Google Scholar 

  2. Roger VL (2013) Epidemiology of heart failure. Circ Res 113(6):646–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rose EA et al (2001) Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 345(20):1435–1443

    Article  CAS  PubMed  Google Scholar 

  4. Burnett H et al (2017) Thirty years of evidence on the efficacy of drug treatments for chronic heart failure with reduced ejection fraction: a network meta-analysis. Circ Heart Fail 10(1):e003529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yancy C et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American college of cardiology foundation/american heart association task force on practice guidelines. J Am Coll Cardiol 62(16):1495–1539

    Article  Google Scholar 

  6. Kirklin JK et al (2017) Eighth annual INTERMACS report: Special focus on framing the impact of adverse events. J Heart Lung Transplant 36(10):1080–1086

    Article  PubMed  Google Scholar 

  7. Kirklin JK et al (2015) Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant 34(12):1495–1504

    Article  PubMed  Google Scholar 

  8. Sandner SE et al (2009) Age and outcome after continuous-flow left ventricular assist device implantation as bridge to transplantation. J Heart Lung Transpl 28(4):367–372

    Article  Google Scholar 

  9. Mi E, DeBakey (1997) Development of a ventricular assist device. Artif Organs 21(11):1149–1153

    Google Scholar 

  10. Lietz K et al (2007) Outcomes of left ventricular assist device implantation as destination therapy in the post-REMATCH era. Circulation 116(5):497–505

    Article  PubMed  Google Scholar 

  11. Slaughter MS et al (2009) Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 361(23):2241–2251

    Article  CAS  PubMed  Google Scholar 

  12. Heatley G et al (2016) Clinical trial design and rationale of the multicenter study of MagLev Technology in patients undergoing mechanical circulatory support therapy with heartmate 3 (MOMENTUM 3) investigational device exemption clinical study protocol. J Heart Lung Transpl 35(4):528–536

    Article  Google Scholar 

  13. Pinney SP, Anyanwu AC, Lala A, Teuteberg JJ, Uriel N, Mehra MR (2017) Left ventricular assist devices for lifelong support. J Am Coll Cardiol 69(23):2845–2861

    Article  PubMed  Google Scholar 

  14. Starling RC et al (2017) Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients: the ROADMAP study 2-year results. JACC Heart Fail 5(7):518–527

    Article  PubMed  Google Scholar 

  15. Carr CM, Jacob J, Park SJ, Karon BL, Williamson EE, Araoz PA (2010) CT of left ventricular assist devices. RadioGraphics 30(2):429–444

    Article  PubMed  Google Scholar 

  16. Huang CH, Liu CL, Chen WK (2009) Periportal edema and ascites: computed tomographic signs of traumatic cardiac tamponade. Am J Emerg Med 27(1):e3–127

    Article  Google Scholar 

  17. Hernández-Luyando L, Calvo J, González E, De L Heras, De La Puente H, López C (1996) Tension pericardial collections: sign of ‘flattened heart’ in CT. Eur J Radiol 23(3):250–252

    Article  PubMed  Google Scholar 

  18. Frazier OH et al (2001) Research and development of an implantable, axial-flow left ventricular assist device: the Jarvik 2000 Heart. in Ann Thorac Surg 71(3 Suppl):S125–S132

    Google Scholar 

  19. Sharma V et al (2012) Driveline infections in left ventricular assist devices: implications for destination therapy. Ann Thorac Surg 94(5):1381–1386

    Article  PubMed  Google Scholar 

  20. Yarboro LT et al (2014) Technique for minimizing and treating driveline infections keynote lecture series. Ann Cardiothorac Surg 3(6):557–562

    PubMed  PubMed Central  Google Scholar 

  21. Zierer A et al (2007) Late-onset driveline infections: the achilles’ heel of prolonged left ventricular assist device support. Ann Thorac Surg 84(2):515–520

    Article  PubMed  Google Scholar 

  22. Chaparro S, Hernandez G, Breton JN (2017) Driveline infection in ventricular assist devices and its implication in the present era of destination therapy. Open J Cardiovasc Surg 9:1179065217714216

    PubMed  PubMed Central  Google Scholar 

  23. Topkara VK et al (2010) Infectious complications in patients with left ventricular assist device: etiology and outcomes in the continuous-flow era. Ann Thorac Surg 90(4):1270–1277

    Article  PubMed  Google Scholar 

  24. Spacek M, Belohlavek O, Votrubova J, Sebesta P, Stadler P (2009) Diagnostics of "non-acute” vascular prosthesis infection using 18F-FDG PET/CT: our experience with 96 prostheses. Eur J Nucl Med Mol Imaging 36(5):850–858

    Article  CAS  PubMed  Google Scholar 

  25. Dell’Aquila AM et al (2016) Contributory role of Fluorine 18-fluorodeoxyglucose positron emission Tomography/Computed tomography in the diagnosis and clinical management of infections in patients supported with a continuous-flow left ventricular assist device. Ann Thorac Surg 101(1):87–94

    Article  PubMed  Google Scholar 

  26. Kim J, Feller ED, Chen W, Liang Y, Dilsizian V (2018) FDG PET/CT for early detection and localization of left ventricular assist device infection. Impact on patient management and outcome. JACC: Cardiovasc Imaging. https://doi.org/10.1016/j.jcmg.2018.01.024

    Article  Google Scholar 

  27. Najjar SS et al (2014) An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. J Heart Lung Transpl 33(1):23–34

    Article  Google Scholar 

  28. Uriel N et al (2014) Device thrombosis in HeartMate II continuous-flow left ventricular assist devices: a multifactorial phenomenon. J Heart Lung Transpl 33(1):51–59

    Article  Google Scholar 

  29. Slaughter MS (2010) Hematologic effects of continuous flow left ventricular assist devices. J Cardiovasc Transl Res 3(6):618–624

    Article  PubMed  Google Scholar 

  30. Tamari Y et al (1975) Functional changes in platelets during extracorporeal circulation. Ann Thorac Surg 19(6):639–647

    Article  CAS  PubMed  Google Scholar 

  31. Grinstein J et al (2016) Screening for outflow cannula malfunction of left ventricular assist devices (LVADs) with the use of doppler echocardiography: new LVAD-specific reference values for contemporary devices. J Card Fail 22(10):808–814

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fine NM et al (2013) Role of echocardiography in patients with intravascular hemolysis due to suspected continuous-flow LVAD thrombosis. JACC Cardiovasc Imaging 6(11):1129–1140

    Article  PubMed  Google Scholar 

  33. Uriel N et al (2012) Development of a novel echocardiography ramp test for speed optimization and diagnosis of device thrombosis in continuous-flow left ventricular assist devices: the Columbia ramp study. J Am Coll Cardiol 60(18):1764–1775

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kato TS et al (2014) Value of serial echo-guided ramp studies in a patient with suspicion of device thrombosis after left ventricular assist device implantation. Echocardiography 31(1):E5–E9

    Article  Google Scholar 

  35. Adatya S et al (2015) Echocardiographic ramp test for continuous-flow left ventricular assist devices. JACC Heart Fail 3(4):291–299

    Article  PubMed  Google Scholar 

  36. Lazoura O et al (2016) A low-dose, dual-phase cardiovascular CT protocol to assess left atrial appendage anatomy and exclude thrombus prior to left atrial intervention. Int J Cardiovasc Imaging 32(2):347–354

    Article  PubMed  Google Scholar 

  37. Teunissen C, Habets J, Velthuis BK, Cramer MJ, Loh P (2017) Double-contrast, single-phase computed tomography angiography for ruling out left atrial appendage thrombus prior to atrial fibrillation ablation. Int J Cardiovasc Imaging 33(1):121–128

    Article  PubMed  Google Scholar 

  38. Tatli S, Lipton MJ (2005) CT for intracardiac thrombi and tumors. Int J Cardiovasc Imaging 21:115–131

    Article  PubMed  Google Scholar 

  39. Mishkin JD et al (2012) Utilization of cardiac computed tomography angiography for the diagnosis of left ventricular assist device thrombosis. Circ Heart Fail 5(2):e27–e29

    Article  Google Scholar 

  40. Chrysant GS, Phancao AA, Horstmanshof DA, Jones S, Long JW (2018) Clinical utility of imaging left ventricular assist devices with 320 row multidetector computed tomography. ASAIO J 64(6):760–765

    Article  Google Scholar 

  41. Obi CA, Chan N, Rizkalla MG, Makaryus JN (2018) Assessment of cardiac thrombosis in patients with left ventricular assist device using multidetector cardiac computed tomography. J Cardiovasc Med 19(7):389–390

    Article  Google Scholar 

  42. Acharya D et al (2013) use of retrospectively gated CT angiography to diagnose systolic LVAD inflow obstruction. ASAIO J 59(5):542–546

    Article  PubMed  Google Scholar 

  43. Sacks J et al (2015) Utility of cardiac computed tomography for inflow cannula patency assessment and prediction of clinical outcome in patients with the HeartMate II left ventricular assist device. Interact Cardiovasc Thorac Surg 21(5):590–593

    Article  PubMed  Google Scholar 

  44. Yu SN et al (2018) Role of computed tomography angiography for HeartMate II left ventricular assist device thrombosis. Int J Artif Organs 41(6):325–332

    Article  Google Scholar 

  45. Muslem R, Caliskan K, Leebeek FWG (2018) Acquired coagulopathy in patients with left ventricular assist devices. J Thromb Haemost 16(3):429–440

    Article  CAS  PubMed  Google Scholar 

  46. Mozaffarian D et al (2016) Executive summary: heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133(4):447–454

    Article  PubMed  Google Scholar 

  47. Acharya D et al (2017) INTERMACS analysis of stroke during support with continuous-flow left ventricular assist devices: risk factors and outcomes. JACC Heart Fail 5(10):703–711

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kirklin JK et al (2014) Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transpl 33(6):555–564

    Article  Google Scholar 

  49. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M (2017) Heart disease and stroke statistics—2017 update. Circulation 135(10):e146–e603

    Article  PubMed  PubMed Central  Google Scholar 

  50. Uriel N et al (2010) Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J Am Coll Cardiol 56(15):1207–1213

    Article  PubMed  Google Scholar 

  51. Dang NC et al (2006) Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Heart Lung Transpl 25(1):1–6

    Article  Google Scholar 

  52. Kormos RL et al (2010) Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg 139(5):1316–1324

    Article  PubMed  Google Scholar 

  53. Kapelios CJ et al (2015) Late-onset right ventricular dysfunction after mechanical support by a continuous-flow left ventricular assist device. J Heart Lung Transpl 34(12):1604–1610

    Article  Google Scholar 

  54. Kavarana MN et al (2002) Right ventricular dysfunction and organ failure in left ventricular assist device recipients: a continuing problem. Ann Thorac Surg 73(3):745–750

    Article  PubMed  Google Scholar 

  55. Weber KT, Janicki JS, Shroff S, Fishman AP (1981) Contractile mechanics and interaction of the right and left ventricles. Am J Cardiol 47(3):686–695

    Article  CAS  PubMed  Google Scholar 

  56. Morcos P, Vick GW, Sahn DJ, Jerosch-Herold M, Shurman A, Sheehan FH (2009) Correlation of right ventricular ejection fraction and tricuspid annular plane systolic excursion in tetralogy of fallot by magnetic resonance imaging. Int J Cardiovasc Imaging 25(3):263–270

    Article  PubMed  Google Scholar 

  57. Tamborini G et al (2018) Multi-parametric ‘on board’ evaluation of right ventricular function using three-dimensional echocardiography: feasibility and comparison to traditional two-and three dimensional echocardiographic measurements. Int J Cardiovasc Imaging. https://doi.org/10.1007/s10554-018-1496-9

    Article  PubMed  Google Scholar 

  58. Driessen MMP et al (2014) Pressure overloaded right ventricles: a multicenter study on the importance of trabeculae in RV function measured by CMR. Int J Cardiovasc Imaging 30(3):599–608

    Article  PubMed  Google Scholar 

  59. Raman SV, Shah M, McCarthy B, Garcia A, Ferketich AK (2006) Multi-detector row cardiac computed tomography accurately quantifies right and left ventricular size and function compared with cardiac magnetic resonance. Am Heart J 151(3):736–744

    Article  PubMed  Google Scholar 

  60. Korshin A et al (2018) The feasibility of tricuspid annular plane systolic excursion performed by transesophageal echocardiography throughout heart surgery and its interchangeability with transthoracic echocardiography. Int J Cardiovasc Imaging 34(7):1017–1028

    Article  CAS  PubMed  Google Scholar 

  61. Forner AF, Hasheminejad E, Sabate S, Ackermann MA, Turton EW, Ender J (2017) Agreement of tricuspid annular systolic excursion measurement between transthoracic and transesophageal echocardiography in the perioperative setting. Int J Cardiovasc Imaging 33(9):1385–1394

    Article  Google Scholar 

  62. Schneider M et al (2018) Echocardiographic assessment of right ventricular function: current clinical practice. Int J Cardiovasc Imaging 35(1):49–56

    Google Scholar 

  63. Puwanant S et al (2008) Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation. J Heart Lung Transpl 27(10):1102–1107

    Article  Google Scholar 

  64. Sato T et al (2013) Simple prediction of right ventricular ejection fraction using tricuspid annular plane systolic excursion in pulmonary hypertension. Int J Cardiovasc Imaging 29(8):1799–1805

    Article  PubMed  Google Scholar 

  65. Vivo RP et al (2013) Increased right-to-left ventricle diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device. J Heart Lung Transpl 32(8):792–799

    Article  Google Scholar 

  66. Potapov EV et al (2008) Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J Heart Lung Transpl 27(12):1275–1281

    Article  Google Scholar 

  67. Baumwol J et al (2011) Right heart failure and ‘failure to thrive’ after left ventricular assist device: clinical predictors and outcomes. J Heart Lung Transpl 30(8):888–895

    Google Scholar 

  68. Kato TS et al (2013) Serial Echocardiography using tissue doppler and speckle tracking imaging to monitor right ventricular failure before and after left ventricular assist device surgery. JACC Heart Fail 1(3):216–222

    Article  PubMed  PubMed Central  Google Scholar 

  69. Demirozu ZT et al (2011) Arteriovenous malformation and gastrointestinal bleeding in patients with the HeartMate II left ventricular assist device. J Heart Lung Transpl 30(8):849–853

    Google Scholar 

  70. Aggarwal A et al (2012) Incidence and management of gastrointestinal bleeding with continuous flow assist devices. Ann Thorac Surg 93(5):1534–1540

    Article  PubMed  Google Scholar 

  71. Morgan J et al (2012) Gastrointestinal bleeding with the HeartMate II left ventricular assist device. J Heart Lung Transpl 31(7):715–718

    Article  Google Scholar 

  72. Kushnir VM et al (2012) Evaluation of GI bleeding after implantation of left ventricular assist device. Gastrointest Endosc 75(5):973–979

    Article  PubMed  Google Scholar 

  73. Joy PS, Kumar G, Guddati AK, Bhama JK, Cadaret LM (2016) Risk factors and outcomes of gastrointestinal bleeding in left ventricular assist device recipients. Am J Cardiol 117:240–244

    Article  PubMed  Google Scholar 

  74. Wever-Pinzon O et al (2013) Pulsatility and the risk of nonsurgical bleeding in patients supported with the continuous-flow left ventricular assist device heartmate II. Circ Heart Fail 6(3):517–526

    Article  CAS  PubMed  Google Scholar 

  75. Marsano J, Desai J, Chang S, Chau M, Pochapin M, Gurvits GE (2015) Characteristics of gastrointestinal bleeding after placement of continuous-flow left ventricular assist device: a case series. Dig Dis Sci 60(6):1859–1867

    Article  PubMed  Google Scholar 

  76. Cappell MS, Lebwohl O (1986) Cessation of recurrent bleeding from gastrointestinal angiodysplasias after aortic valve replacement. Ann Intern Med 105(1):54–57

    Article  CAS  PubMed  Google Scholar 

  77. Thorne DA, Datz FL, Remley K, Christian PE (1987) Bleeding rates necessary for detecting acute gastrointestinal bleeding with technetium-99m-labeled red blood cells in an experimental model. J Nucl Med 28(4):514–520

    CAS  PubMed  Google Scholar 

  78. Bunker SR et al (1984) Scintigraphy of gastrointestinal hemorrhage: superiority of 99mTc red blood cells over 99mTc sulfur colloid. Am J Roentgenol 143(3):543–548

    Article  CAS  Google Scholar 

  79. Dusold R, Burke K, Carpentier W, Dyck WP (1994) The accuracy of technetium-99m-labeled red cell scintigraphy in localizing gastrointestinal bleeding. Am J Gastroenterol 89(3):345–348

    CAS  PubMed  Google Scholar 

  80. Markisz JA, Front D, Royal HD, Sacks B, Parker JA, Kolodny GM (1982) An evaluation of 99mTc-labeled red blood cell scintigraphy for the detection and localization of gastrointestinal bleeding sites. Gastroenterology 83(2):394–398

    CAS  PubMed  Google Scholar 

  81. Emslie JT, Zarnegar K, Siegel ME, Beart RW (1996) Technetium-99m-labeled red blood cell scans in the investigation of gastrointestinal bleeding. Dis Colon Rectum 39(7):750–754

    Article  CAS  PubMed  Google Scholar 

  82. Huprich jamesE, Barlow JM, Hansel SL, Alexander JA, Fidler JL (2013) Multiphase CT enterography evaluation of small-bowel vascular lesions. AJR 201:65–72

    Article  PubMed  Google Scholar 

  83. Wang Z, Chen J, Liu J, Qin X, Huang Y (2013) CT enterography in obscure gastrointestinal bleeding: a systematic review and meta-analysis. J Med Imaging Radiat Oncol 57(3):263–273

    Article  PubMed  Google Scholar 

  84. Kar B et al (2005) The effect of LVAD aortic outflow-graft placement on hemodynamics and flow: implantation technique and computer flow modeling. Tex Heart Inst J 32(3):294–298

    PubMed  PubMed Central  Google Scholar 

  85. Karmonik C et al (2012) Influence of LVAD cannula outflow tract location on hemodynamics in the ascending aorta: a patient-specific computational fluid dynamics approach. ASAIO J 58(6):562–567

    Article  PubMed  Google Scholar 

  86. Karmonik C et al (2014) computational fluid dynamics in patients with continuous-flow left ventricular assist device support show hemodynamic alterations in the ascending aorta. J Thorac Cardiovasc Surg 147(4):1326–1333

    Article  PubMed  Google Scholar 

  87. Karmonik C et al (2014) Comparison of hemodynamics in the ascending aorta between pulsatile and continuous flow left ventricular assist devices using computational fluid dynamics based on computed tomography images. Artif Organs 38(2):142–148

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XL participated in the concept creation, literature search, review, drafting, VK participated in the drafting and editing, ST participated in the drafting, editing and concept creation, AR participated in the drafting, SA participated in the concept creation and editing, AD participated in the concept creation and editing, SP participated in the concept creation, drafting, literature review and editing, FR participated in the drafting and editing.

Corresponding author

Correspondence to Sasan Partovi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Kondray, V., Tavri, S. et al. Role of imaging in diagnosis and management of left ventricular assist device complications. Int J Cardiovasc Imaging 35, 1365–1377 (2019). https://doi.org/10.1007/s10554-019-01562-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-019-01562-4

Keywords

Navigation