Skip to main content

Advertisement

Log in

CT Imaging of Left Ventricular Assist Devices and Associated Complications

  • Cardiac Computed Tomography (A. Crean and G. Small, Section Editors)
  • Published:
Current Cardiovascular Imaging Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this paper is to review the current role of computed tomography (CT) in the imaging of left ventricular assist devices (LVAD).

Recent Findings

Recent studies have highlighted the prognostic role of measuring skeletal muscle CT attenuation in predicting adverse LVAD outcomes. CT is also useful for evaluation of inflow cannula malposition, and outflow graft complications such as obstruction and kinking. In addition, 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-CT) has been shown to be of value in evaluation of suspected LVAD infection. Newer CT techniques such as dual-energy CT and metal artifact reduction algorithms can potentially generate better quality CT images, though currently there is no high-quality published literature on their use in LVAD imaging.

Summary

CT is a useful technique as part of a multi-modality approach in the evaluation of LVADs and associated complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43.

    CAS  PubMed  Google Scholar 

  2. Lund LH, Edwards LB, Kucheryavaya AY, Benden C, Dipchand AI, Goldfarb S, et al. The registry of the International Society for Heart and Lung Transplantation: thirty-second official adult heart transplantation report--2015; focus theme: early graft failure. J Heart Lung Transplant. 2015;34(10):1244–54.

    PubMed  Google Scholar 

  3. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, et al. Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transplant. 2014;33(6):555–64.

    PubMed  Google Scholar 

  4. Gosev I, Kiernan MS, Eckman P, Soleimani B, Kilic A, Uriel N, et al. Long-term survival in patients receiving a continuous-flow left ventricular assist device. Ann Thorac Surg. 2018;105(3):696–701.

    PubMed  Google Scholar 

  5. Mohamed I, Lau CT, Bolen MA, El-Sherief AH, Azok JT, Karimov JH, et al. Building a bridge to save a failing ventricle: radiologic evaluation of short- and long-term cardiac assist devices. Radiographics. 2015;35(2):327–56.

    PubMed  Google Scholar 

  6. Flores AS, Essandoh M, Yerington GC, Bhatt AM, Iyer MH, Perez W, et al. Echocardiographic assessment for ventricular assist device placement. J Thorac Dis. 2015;7(12):2139–50.

    PubMed  PubMed Central  Google Scholar 

  7. Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, et al. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32(2):157–87.

    PubMed  Google Scholar 

  8. Carr CM, Jacob J, Park SJ, Karon BL, Williamson EE, Araoz PA. CT of left ventricular assist devices. Radiographics. 2010;30(2):429–44.

    PubMed  Google Scholar 

  9. Prinzing A, Herold U, Berkefeld A, Krane M, Lange R, Voss B. Left ventricular assist devices-current state and perspectives. J Thorac Dis. 2016;8(8):E660–6.

    PubMed  PubMed Central  Google Scholar 

  10. Sen A, Larson JS, Kashani KB, Libricz SL, Patel BM, Guru PK, et al. Mechanical circulatory assist devices: a primer for critical care and emergency physicians. Crit Care. 2016;20(1):153.

    PubMed  PubMed Central  Google Scholar 

  11. Sajgalik P, Grupper A, Edwards BS, Kushwaha SS, Stulak JM, Joyce DL, et al. Current status of left ventricular assist device therapy. Mayo Clin Proc. 2016;91(7):927–40.

    PubMed  Google Scholar 

  12. Lim HS, Howell N, Ranasinghe A. The physiology of continuous-flow left ventricular assist devices. J Card Fail. 2017;23(2):169–80.

    PubMed  Google Scholar 

  13. Waller AH, Dunne R, Stewart GC, Ghosh N, Gosev I, Rybicki FJ, et al. Evaluation of bend relief disconnection in patients supported by a HeartMate II left ventricular assist device. Circ Cardiovasc Imaging. 2014;7(5):844–8.

    PubMed  Google Scholar 

  14. •• Trankle CR, Grizzard JD, Shah KB, Rezai Gharai L, Dana F, Kang MS, et al. Left ventricular assist device outflow graft compression: incidence, clinical associations and potential etiologies. J Card Fail. 2019;25(7):545–52. This paper highlights the role of extrinsic compression from biodebris in the bend relief protector of outflow grafts.

    PubMed  Google Scholar 

  15. Chrysant GS, Phancao AA, Horstmanshof DA, Jones S, Long JW. Clinical utility of imaging left ventricular assist devices with 320 row multidetector computed tomography. ASAIO J. 2018;64(6):760–5.

    PubMed  Google Scholar 

  16. Tabari A, Lo Gullo R, Murugan V, Otrakji A, Digumarthy S, Kalra M. Recent advances in computed tomographic technology: cardiopulmonary imaging applications. J Thorac Imaging. 2017;32(2):89–100.

    PubMed  Google Scholar 

  17. Halliburton SS, Tanabe Y, Partovi S, Rajiah P. The role of advanced reconstruction algorithms in cardiac CT. Cardiovasc Diagn Ther. 2017;7(5):527–38.

    PubMed  PubMed Central  Google Scholar 

  18. Teigen LM, John R, Kuchnia AJ, Nagel EM, Earthman CP, Kealhofer J, et al. Preoperative pectoralis muscle quantity and attenuation by computed tomography are novel and powerful predictors of mortality after left ventricular assist device implantation. Circ Heart Fail. 2017;10(9):e004069.

    PubMed  Google Scholar 

  19. • Cogswell R, Trachtenberg B, Murray T, Schultz J, Teigen L, Allen T, et al. A novel model incorporating Pectoralis muscle measures to predict mortality after ventricular assist device implantation. J Card Fail. 2020;26(4):308–15. This paper highlights the role of pre-implantation pectoralis muscle assessment to predict prognosis after LVAD implantation.

    PubMed  Google Scholar 

  20. Acharya D, Aryal S, Loyaga-Rendon R, Pamboukian SV, Tallaj J, Kirklin JK, et al. Use of computed tomography in preoperative planning for Heartware left ventricular assist device placement. ASAIO J. 2019;65(1):70–6.

    PubMed  Google Scholar 

  21. Lima B, Dur O, Chuang J, Chamogeorgakis T, Farrar DJ, Sundareswaran KS, et al. Novel cardiac coordinate modeling system for three-dimensional quantification of inflow cannula malposition of HeartMate II LVADs. ASAIO J. 2018;64(2):154–8.

    PubMed  Google Scholar 

  22. • Sorensen EN, Kon ZN, Feller ED, Pham SM, Griffith BP. Quantitative assessment of inflow malposition in two continuous-flow left ventricular assist devices. Ann Thorac Surg. 2018;105(5):1377–83. This paper highlights the role of inflow cannula malposition in pump thrombosis.

    PubMed  Google Scholar 

  23. Sacks J, Gonzalez-Stawinski GV, Hall S, Lima B, MacHannaford J, Dockery W, et al. Utility of cardiac computed tomography for inflow cannula patency assessment and prediction of clinical outcome in patients with the HeartMate II left ventricular assist device. Interact Cardiovasc Thorac Surg. 2015;21(5):590–3.

    PubMed  Google Scholar 

  24. Spanier T, Oz M, Levin H, Weinberg A, Stamatis K, Stern D, et al. Activation of coagulation and fibrinolytic pathways in patients with left ventricular assist devices. J Thorac Cardiovasc Surg. 1996;112(4):1090–7.

    CAS  PubMed  Google Scholar 

  25. • Tran BC, Nijjar PS. Role of contrast CT for the diagnosis and the prognosis of suspected LVAD thrombosis. J Card Surg. 2017;32(2):162–5. This paper highlights the role of CT in diagnosis of outlfow graft complications.

    PubMed  Google Scholar 

  26. Goldstein DJ, John R, Salerno C, Silvestry S, Moazami N, Horstmanshof D, et al. Algorithm for the diagnosis and management of suspected pump thrombus. J Heart Lung Transplant. 2013;32(7):667–70.

    PubMed  Google Scholar 

  27. •• Scandroglio AM, Kaufmann F, Pieri M, Kretzschmar A, Muller M, Pergantis P, et al. Diagnosis and treatment algorithm for blood flow obstructions in patients with left ventricular assist device. J Am Coll Cardiol. 2016;67(23):2758–68. This paper highlights a diagnostic algorithm for suspected LVAD thrombosis.

    PubMed  Google Scholar 

  28. Uriel N, Morrison KA, Garan AR, Kato TS, Yuzefpolskaya M, Latif F, et al. Development of a novel echocardiography ramp test for speed optimization and diagnosis of device thrombosis in continuous-flow left ventricular assist devices: the Columbia ramp study. J Am Coll Cardiol. 2012;60(18):1764–75.

    PubMed  PubMed Central  Google Scholar 

  29. Shroff GS, Ocazionez D, Akkanti B, Vargas D, Garza A, Gupta P, et al. CT imaging of complications associated with continuous-flow left ventricular assist devices (LVADs). Semin Ultrasound CT MR. 2017;38(6):616–28.

    PubMed  Google Scholar 

  30. Mellnick VM, Raptis DA, Raptis C, Bhalla S. Imaging of left ventricular device complications. J Thorac Imaging. 2013;28(2):W35–41.

    PubMed  Google Scholar 

  31. Gomez CK, Schiffman SR, Hobbs SK. The role of computed tomography in predicting left ventricular assist device infectious complications. J Clin Imaging Sci. 2016;6:43.

    PubMed  PubMed Central  Google Scholar 

  32. Li X, Kondray V, Tavri S, Ruhparwar A, Azeze S, Dey A, et al. Role of imaging in diagnosis and management of left ventricular assist device complications. Int J Cardiovasc Imaging. 2019;35(7):1365–77.

    PubMed  Google Scholar 

  33. Dell'Aquila AM, Mastrobuoni S, Alles S, Wenning C, Henryk W, Schneider SR, et al. Contributory role of fluorine 18-fluorodeoxyglucose positron emission tomography/computed tomography in the diagnosis and clinical management of infections in patients supported with a continuous-flow left ventricular assist device. Ann Thorac Surg. 2016;101(1):87–94 discussion.

    PubMed  Google Scholar 

  34. •• Tam MC, Patel VN, Weinberg RL, Hulten EA, Aaronson KD, Pagani FD, et al. Diagnostic accuracy of FDG PET/CT in suspected LVAD infections: a case series, systematic review, and meta-analysis. JACC Cardiov Imaging. 2019;13(5):1191–1202. This paper highlights the role of FDG PET-CT in diagnosis of LVAD infections.

  35. Dell'Aquila AM, Avramovic N, Mastrobuoni S, Motekallemi A, Wisniewski K, Scherer M, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography for improving diagnosis of infection in patients on CF-LVAD: longing for more 'insights'. Eur Heart J Cardiovasc Imaging. 2018;19(5):532–43.

    PubMed  Google Scholar 

  36. Argiriou M, Kolokotron S-M, Sakellaridis T, Argiriou O, Charitos C, Zarogoulidis P, et al. Right heart failure post left ventricular assist device implantation. J Thorac Dis. 2014;6 Suppl 1(Suppl 1):S52–S9.

    PubMed  Google Scholar 

  37. Ali HR, Kiernan MS, Choudhary G, Levine DJ, Sodha NR, Ehsan A, et al. Right ventricular failure post-implantation of left ventricular assist device: prevalence, pathophysiology, and predictors. ASAIO J. 2020;66(6):610–19.

  38. Garcia-Alvarez A, Fernandez-Friera L, Lau JF, Sawit ST, Mirelis JG, Castillo JG, et al. Evaluation of right ventricular function and post-operative findings using cardiac computed tomography in patients with left ventricular assist devices. J Heart Lung Transplant. 2011;30(8):896–903.

    PubMed  Google Scholar 

  39. Slaughter MS, Pagani FD, McGee EC, Birks EJ, Cotts WG, Gregoric I, et al. HeartWare ventricular assist system for bridge to transplant: combined results of the bridge to transplant and continued access protocol trial. J Heart Lung Transplant. 2013;32(7):675–83.

    PubMed  Google Scholar 

  40. Stern DR, Kazam J, Edwards P, Maybaum S, Bello RA, D'Alessandro DA, et al. Increased incidence of gastrointestinal bleeding following implantation of the HeartMate II LVAD. J Card Surg. 2010;25(3):352–6.

    PubMed  Google Scholar 

  41. •• Kirklin JK, Pagani FD, Goldstein DJ, John R, Rogers JG, Atluri P, et al. American Association for Thoracic Surgery/International Society for Heart and Lung Transplantation guidelines on selected topics in mechanical circulatory support. J Thorac Cardiovasc Surg. 2020;159(3):865–96. Multi-society guideline for LVAD management.

    PubMed  Google Scholar 

  42. Scholtz JE, Ghoshhajra B. Advances in cardiac CT contrast injection and acquisition protocols. Cardiovasc Diagn Ther. 2017;7(5):439–51.

    PubMed  PubMed Central  Google Scholar 

  43. Danad I, Fayad ZA, Willemink MJ, Min JK. New applications of cardiac computed tomography: dual-energy, spectral, and molecular CT imaging. JACC Cardiovasc Imaging. 2015;8(6):710–23.

    PubMed  PubMed Central  Google Scholar 

  44. Khodarahmi I, Isaac A, Fishman EK, Dalili D, Fritz J. Metal about the hip and artifact reduction techniques: from basic concepts to advanced imaging. Semin Musculoskelet Radiol. 2019;23(3):e68–81.

    PubMed  Google Scholar 

  45. Raju R, Thompson AG, Lee K, Precious B, Yang TH, Berger A, et al. Reduced iodine load with CT coronary angiography using dual-energy imaging: a prospective randomized trial compared with standard coronary CT angiography. J Cardiovasc Comput Tomogr. 2014;8(4):282–8.

    PubMed  PubMed Central  Google Scholar 

  46. Aissa J, Boos J, Sawicki LM, Heinzler N, Krzymyk K, Sedlmair M, et al. Iterative metal artefact reduction (MAR) in postsurgical chest CT: comparison of three iMAR-algorithms. Br J Radiol. 2017;90(1079):20160778.

    PubMed  PubMed Central  Google Scholar 

  47. Lim P, Barber J, Sykes J. Evaluation of dual energy CT and iterative metal artefact reduction (iMAR) for artefact reduction in radiation therapy. Australas Phys Eng Sci Med. 2019;42(4):1025–32.

    CAS  PubMed  Google Scholar 

  48. Thomas R, Aghayev A, Steigner ML. Artifactual appearance of thrombosis on using metal artifact reduction software reconstruction in computed tomographic angiography. J Comput Assist Tomogr. 2018;42(3):457–8.

    PubMed  Google Scholar 

  49. Subhas N, Polster JM, Obuchowski NA, Primak AN, Dong FF, Herts BR, et al. Imaging of arthroplasties: improved image quality and lesion detection with iterative metal artifact reduction, a new CT metal artifact reduction technique. AJR Am J Roentgenol. 2016;207(2):378–85.

    PubMed  Google Scholar 

  50. Axente M, Paidi A, Von Eyben R, Zeng C, Bani-Hashemi A, Krauss A, et al. Clinical evaluation of the iterative metal artifact reduction algorithm for CT simulation in radiotherapy. Med Phys. 2015;42(3):1170–83.

    PubMed  Google Scholar 

  51. Giantsoudi D, De Man B, Verburg J, Trofimov A, Jin Y, Wang G, et al. Metal artifacts in computed tomography for radiation therapy planning: dosimetric effects and impact of metal artifact reduction. Phys Med Biol. 2017;62(8):R49–r80.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhjot S. Nijjar.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiac Computed Tomography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agdamag, A.C., Velangi, P.S., Salavati, A. et al. CT Imaging of Left Ventricular Assist Devices and Associated Complications. Curr Cardiovasc Imaging Rep 13, 26 (2020). https://doi.org/10.1007/s12410-020-09546-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12410-020-09546-y

Keywords

Navigation