Skip to main content
Log in

Reducing Parametrization Errors for Polar Surface Turbulent Fluxes Using Machine Learning

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Turbulent exchanges between sea ice and the atmosphere are known to influence the melting rate of sea ice, the development of atmospheric circulation anomalies and, potentially, teleconnections between polar and non-polar regions. Large model errors remain in the parametrization of turbulent heat fluxes over sea ice in climate models, resulting in significant uncertainties in projections of future climate. Fluxes are typically calculated using bulk formulae, based on Monin-Obukhov similarity theory, which have shown particular limitations in polar regions. Parametrizations developed specifically for polar conditions (e.g. representing form drag from ridges or melt ponds on sea ice) rely on sparse observations and thus may not be universally applicable. In this study, new data-driven parametrizations have been developed for surface turbulent fluxes of momentum, sensible heat and latent heat in the Arctic. Machine learning has already been used outside the polar regions to provide accurate and computationally inexpensive estimates of surface turbulent fluxes. To investigate the feasibility of this approach in the Arctic, we have fitted neural-network models to a reference dataset (SHEBA). Predictive performance has been tested using data from other observational campaigns. For momentum and sensible heat, performance of the neural networks is found to be comparable to, and in some cases substantially better than, that of a state-of-the-art bulk formulation. These results offer an efficient alternative to the traditional bulk approach in cases where the latter fails, and can serve to inform further physically based developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

ACCACIA flight data are available from the CEDA archive: https://doi.org/10.5285/0844186db1ba9e20319a2560f8d61651 (MASIN); https://catalogue.ceda.ac.uk/uuid/c064b0c150274a1cbd18c563573f392e (FAAM). ACSE cruise data are available from the CEDA archive (https://doi.org/10.5285/c6f1b1ff16f8407386e2d643bc5b916a, Brooks et al. 2022a). AO16 cruise data are available from the CEDA archive (https://doi.org/10.5285/614752d35dc147a598d5421443fb50e8, Brooks et al. 2022b). SHEBA data are available from the NCAR Earth Observing Laboratory: (https://doi.org/10.5065/D65H7DNS, Andreas et al. 2007) (ASFG tower); (https://doi.org/10.5065/D6ZC8170, Andreas et al. 2012) (PAM stations). NSIDC sea ice concentration data are available from the NSIDC archive (https://doi.org/10.7265/efmz-2t65, Meier et al. 2021).

Code availability

The polar-specific bulk algorithm used in this study and described in Sect. 3.1 is available to download as a Python library from GitHub (https://github.com/virginieguemas/CDlib).

References

  • Andreas EL, Fairall CW, Grachev AA, Guest PS, Horst TW, Jordan RE, Persson POG (2003) Turbulent transfer coefficients and roughness lengths over sea ice: the SHEBA results. In: 7th conference on polar meteorology and oceanography. American Meteorological Society, Proc, Hyannis, MA

  • Andreas EL, Fairall CW, Guest PS, Persson POG (1999) An overview of the SHEBA atmospheric surface flux program. 13th symposium on boundary layers and turbulence. American Meteorological Society, Proc, Dallas, TX, pp 550–555

    Google Scholar 

  • Andreas EL, Fairall C, Guest P, Persson O (2007) Tower, 5-level hourly measurements plus radiometer and surface data at Met City (ASFG). Version 1.0

  • Andreas EL, Fairall C, Guest P, Persson O (2012) Ice camp surface mesonet NCAR PAM-III 1 hour (FINAL). Version 1.0

  • Andreas EL (1987) A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Boundary-Layer Meteorol 38(1):159–184

    Article  Google Scholar 

  • Andreas EL (1998) The atmospheric boundary layer over polar marine surfaces. In: Leppäranta M (ed) Physics of ice-covered seas, vol 2. Helsinki University Press, Helsinki, pp 715–773

    Google Scholar 

  • Andreas EL (2011) A relationship between the aerodynamic and physical roughness of winter sea ice. Q J R Meteorol Soc 137(659):1581–1588

    Article  Google Scholar 

  • Andreas EL, Guest PS, Persson POG, Fairall CW, Horst TW, Moritz RE, Semmer SR (2002) Near-surface water vapor over polar sea ice is always near ice saturation. J Geophys Res Oceans 107(C10):SHE 8-1-SHE 8-15

  • Andreas EL, Claffey KJ, Jordan RE, Fairall CW, Guest PS, Persson POG, Grachev AA (2006) Evaluations of the von Kármán constant in the atmospheric surface layer. J Fluid Mech 559:117–149

    Article  Google Scholar 

  • Andreas EL, Horst TW, Grachev AA, Persson POG, Fairall CW, Guest PS, Jordan RE (2010) Parametrizing turbulent exchange over summer sea ice and the marginal ice zone. Q J R Meteorol Soc 136(649):927–943

    Article  Google Scholar 

  • Andreas EL, Persson POG, Grachev AA, Jordan RE, Horst TW, Guest PS, Fairall CW (2010) Parameterizing turbulent exchange over sea ice in winter. J Hydrometeorol 11(1):87–104

    Article  Google Scholar 

  • Audouin O, Roehrig R, Couvreux F, Williamson D (2021) Modeling the GABLS4 strongly-stable boundary layer with a GCM turbulence parameterization: parametric sensitivity or intrinsic limits? J Adv Model Earth Syst 13(3):e2020MS002269

  • Baas P, Steeneveld GJ, van de Wiel BJH, Holtslag A, a. M. (2006) Exploring self-correlation in flux-gradient relationships for stably stratified conditions. J Atmos Sci 63(11):3045–3054

  • Beck MW (2018) NeuralNetTools: visualization and analysis tools for neural networks. J Stat Softw 85:1–20

  • Beljaars ACM, Holtslag A, a. M. (1991) Flux parameterization over land surfaces for atmospheric models. J Appl Meteorol Climatol 30(3):327–341

  • Bonan DB, Lehner F, Holland MM (2021) Partitioning uncertainty in projections of Arctic sea ice. Environ Res Lett 16(4):044002

    Article  Google Scholar 

  • Bonan DB, Schneider T, Eisenman I, Wills RCJ (2021) Constraining the date of a seasonally ice-free Arctic using a simple model. Geophys Res Lett 48(18):e2021GL094309

  • Bosveld FC, Baas P, Steeneveld G-J, Holtslag AAM, Angevine WM, Bazile E, de Bruijn EIF, Deacu D, Edwards JM, Ek M, Larson VE, Pleim JE, Raschendorfer M, Svensson G (2014) The third GABLS intercomparison case for evaluation studies of boundary-layer models. Part B: results and process understanding. Boundary-Layer Meteorol 152(2):157–187

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  • Brooks IM, Prytherch J, Srivastava P (2022a) CANDIFLOS: surface fluxes from ACSE measurement campaign on icebreaker Oden, 2014

  • Brooks IM, Prytherch J, Srivastava P (2022b) CANDIFLOS: surface fluxes from AO2016 measurement campaign on icebreaker Oden, 2016

  • Broyden CG (1970) The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA J Appl Math 6(1):76–90

    Article  Google Scholar 

  • Canty A, Ripley BD (2022) Boot: bootstrap functions (Originally by Angelo Canty for S)

  • Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’16. Association for Computing Machinery,New York, NY, USA, pp 785–794

  • Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J, Jones J (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7(9):627–637

    Article  CAS  Google Scholar 

  • Cohen J, Zhang X, Francis J, Jung T, Kwok R, Overland J, Ballinger TJ, Bhatt US, Chen HW, Coumou D, Feldstein S, Gu H, Handorf D, Henderson G, Ionita M, Kretschmer M, Laliberte F, Lee S, Linderholm HW, Maslowski W, Peings Y, Pfeiffer K, Rigor I, Semmler T, Stroeve J, Taylor PC, Vavrus S, Vihma T, Wang S, Wendisch M, Wu Y, Yoon J (2020) Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat Clim Change 10(1):20–29

    Article  Google Scholar 

  • Cuxart J, Holtslag AAM, Beare RJ, Bazile E, Beljaars A, Cheng A, Conangla L, Ek M, Freedman F, Hamdi R, Kerstein A, Kitagawa H, Lenderink G, Lewellen D, Mailhot J, Mauritsen T, Perov V, Schayes G, Steeneveld G-J, Svensson G, Taylor P, Weng W, Wunsch S, Xu K-M (2006) Single-column model intercomparison for a stably stratified atmospheric boundary layer. Boundary-Layer Meteorol 118(2):273–303

    Article  Google Scholar 

  • Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge series in statistical and probabilistic mathematics. Cambridge University Press, Cambridge

  • Edson JB, Zappa CJ, Ware JA, McGillis WR, Hare JE (2004) Scalar flux profile relationships over the open ocean. J Geophys Res Oceans 109(C8)

  • Edson JB, Jampana V, Weller RA, Bigorre SP, Plueddemann AJ, Fairall CW, Miller SD, Mahrt L, Vickers D, Hersbach H (2013) On the exchange of momentum over the open ocean. J Phys Oceanogr 43(8):1589–1610

    Article  Google Scholar 

  • Elvidge AD, Renfrew IA, Weiss AI, Brooks IM, Lachlan-Cope TA, King JC (2016) Observations of surface momentum exchange over the marginal ice zone and recommendations for its parametrisation. Atmos Chem Phys 16(3):1545–1563

    Article  CAS  Google Scholar 

  • Elvidge AD, Renfrew IA, Brooks IM, Srivastava P, Yelland MJ, Prytherch J (2021) Surface heat and moisture exchange in the marginal ice zone: observations and a new parameterization scheme for weather and climate models. J Geophys Res Atmos 126(17):e2021JD034827

  • Elvidge AD, Renfrew I, Edwards J, Brooks I, Srivastava P, Weiss A (2023) Improved simulation of the polar atmospheric boundary layer by accounting for aerodynamic roughness in the parameterisation of surface scalar exchange over sea ice. J Adv Model Earth Syst 15:e2022MS003305

  • Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J Clim 16(4):571–591

    Article  Google Scholar 

  • Fiedler EK, Lachlan-Cope TA, Renfrew IA, King JC (2010) Convective heat transfer over thin ice covered coastal polynyas. J Geophys Res Oceans 115(C10)

  • Fletcher R (1970) A new approach to variable metric algorithms. Comput J 13(3):317–322

    Article  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19(1):1–67

    Google Scholar 

  • Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232

    Article  Google Scholar 

  • Garratt JR (1994) The atmospheric boundary layer. Cambridge University Press, Cambridge, Cambridge atmospheric and space science series

    Google Scholar 

  • Gascard J-C, Zhang J, Rafizadeh M (2019) Rapid decline of Arctic sea ice volume: causes and consequences. Cryosphere Discuss 1–29

  • Goldfarb D (1970) A family of variable-metric methods derived by variational means. Math Comput 24(109):23–26

    Article  Google Scholar 

  • Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2002) Stable boundary-layer regimes observed during the SHEBA Experiment. 15th symposium on boundary layers and turbulence. American Meteorological Society, Proc, Wageningen, The Netherlands, pp 374–377

    Google Scholar 

  • Grachev AA, Fairall CW (1997) Dependence of the Monin-Obukhov stability parameter on the bulk Richardson number over the ocean. J Appl Meteorol Climatol 36(4):406–414

    Article  Google Scholar 

  • Grachev AA, Fairall CW, Bradley EF (2000) Convective profile constants revisited. Boundary-Layer Meteorol 94(3):495–515

    Article  Google Scholar 

  • Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol 116(2):201–235

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2007) SHEBA flux-profile relationships in the stable atmospheric boundary layer. Boundary-Layer Meteorol 124(3):315–333

    Article  Google Scholar 

  • Graversen RG, Mauritsen T, Tjernström M, Källén E, Svensson G (2008) Vertical structure of recent Arctic warming. Nature 451(7174):53–56

    Article  CAS  Google Scholar 

  • Hastie T, Tibshirani R (1986) Generalized additive models. Stat Sci 1(3):297–310

    Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) Neural networks. In: Hastie T, Tibshirani R, Friedman J (eds) The elements of statistical learning: data mining, inference, and prediction, springer series in statistics. Springer, New York, pp 389–416

    Chapter  Google Scholar 

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366

    Article  Google Scholar 

  • Jung T, Doblas-Reyes F, Goessling H, Guemas V, Bitz C, Buontempo C, Caballero R, Jakobson E, Jungclaus J, Karcher M, Koenigk T, Matei D, Overland J, Spengler T, Yang S (2015) Polar lower-latitude linkages and their role in weather and climate prediction. Bull Am Meteorol Soc 96(11):ES197–ES200

  • Jung T, Gordon ND, Bauer P, Bromwich DH, Chevallier M, Day JJ, Dawson J, Doblas-Reyes F, Fairall C, Goessling HF, Holland M, Inoue J, Iversen T, Klebe S, Lemke P, Losch M, Makshtas A, Mills B, Nurmi P, Perovich D, Reid P, Renfrew IA, Smith G, Svensson G, Tolstykh M, Yang Q (2016) Advancing polar prediction capabilities on daily to seasonal time scales. Bull Am Meteorol Soc 97(9):1631–1647

    Article  Google Scholar 

  • King JC, Lachlan-Cope TA, Ladkin RS, Weiss A (2008) Airborne measurements in the stable boundary layer over the Larsen ice shelf. Antarctica. Boundary-Layer Meteorol 127(3):413–428

    Article  Google Scholar 

  • Kovacs KM, Lydersen C, Overland JE, Moore SE (2011) Impacts of changing sea-ice conditions on Arctic marine mammals. Mar Biodivers 41(1):181–194

    Article  Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90

    Article  Google Scholar 

  • Kuhn M, Johnson K (2013) Applied predictive modeling. Springer, New York

    Book  Google Scholar 

  • Lesins G, Duck TJ, Drummond JR (2012) Surface energy balance framework for Arctic amplification of climate change. J Clim 25(23):8277–8288

    Article  Google Scholar 

  • Leufen LH, Schädler G (2019) Calculating the turbulent fluxes in the atmospheric surface layer with neural networks. Geosci Model Dev 12(5):2033–2047

    Article  Google Scholar 

  • Liu J, Song M, Zhu Z, Horton RM, Hu Y, Xie S-P (2022) Arctic sea-ice loss is projected to lead to more frequent strong El Niño events. Nat Commun 13(1):4952

    Article  CAS  Google Scholar 

  • Lüpkes C, Gryanik VM (2015) A stability-dependent parametrization of transfer coefficients for momentum and heat over polar sea ice to be used in climate models. J Geophys Res Atmos 120(2):552–581

    Article  Google Scholar 

  • Lüpkes C, Gryanik VM, Rösel A, Birnbaum G, Kaleschke L (2013) Effect of sea ice morphology during Arctic summer on atmospheric drag coefficients used in climate models. Geophys Res Lett 40(2):446–451

    Article  Google Scholar 

  • Lüpkes C, Gryanik VM, Hartmann J, Andreas EL (2012) A parametrization, based on sea ice morphology, of the neutral atmospheric drag coefficients for weather prediction and climate models. J Geophys Res Atmos 117(D13)

  • McCandless T, Gagne DJ, Kosović B, Haupt SE, Yang B, Becker C, Schreck J (2022) Machine learning for improving surface-layer-flux estimates. Boundary-Layer Meteorol 185(2):199–228

    Article  Google Scholar 

  • Meier WN, Fetterer F, Windnagel A, Stewart S (2021) NOAA/NSIDC climate data record of passive microwave sea ice concentration, Version 4

  • Meier WN, Hovelsrud GK, van Oort BE, Key JR, Kovacs KM, Michel C, Haas C, Granskog MA, Gerland S, Perovich DK, Makshtas A, Reist JD (2014) Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity. Rev Geophys 52(3):185–217

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr Akad Nauk SSSR Geophiz Inst 24(151):163–187

    Google Scholar 

  • Muñoz-Esparza D, Becker C, Sauer JA, Gagne DJ II, Schreck J, Kosović B (2022) On the application of an observations-based machine learning parameterization of surface layer fluxes within an atmospheric large-eddy simulation model. J Geophys Res Atmos 127(16):e2021JD036214

  • Notz D, Haumann FA, Haak H, Jungclaus JH, Marotzke J (2013) Arctic sea-ice evolution as modeled by Max Planck Institute for Meteorology’s Earth system model. J Adv Model Earth Syst 5(2):173–194

    Article  Google Scholar 

  • Pelliccioni A, Poli U, Agnello P, Coni A (1999) Application of neural networks to model the Monin-Obukhov length and the mixed-layer height from ground-based meteorological data. Trans Ecol Environ 29:1055–1064

    Google Scholar 

  • Persson POG, Fairall CW, Andreas EL, Guest PS, Perovich DK (2002) Measurements near the atmospheric surface flux group tower at SHEBA: Near-surface conditions and surface energy budget. J Geophys Res Oceans 107(C10):SHE 21-1-SHE 21-35

  • Persson O, Shupe MD, Tjernström M, Sedlar J, Brooks IM, Brooks BJ, Bjork G, Prytherch J, Salisbury D, Achtert P, Sotiropoulou G, Johnston PE, Wolfe D (2015) Atmosphere-ice-ocean interactions during summer melt and early autumn freeze-up: observations from the ACSE Field Program

  • Petersen GN, Renfrew IA (2009) Aircraft-based observations of air-sea fluxes over Denmark Strait and the Irminger Sea during high wind speed conditions. Q J R Meteorol Soc 135(645):2030–2045

    Article  Google Scholar 

  • Post E, Bhatt US, Bitz CM, Brodie JF, Fulton TL, Hebblewhite M, Kerby J, Kutz SJ, Stirling I, Walker DA (2013) Ecological consequences of sea-ice decline. Science 341(6145):519–524

    Article  CAS  Google Scholar 

  • Previdi M, Smith KL, Polvani LM (2021) Arctic amplification of climate change: a review of underlying mechanisms. Environ Res Lett 16(9):093003

    Article  CAS  Google Scholar 

  • Prytherch J, Brooks IM, Crill PM, Thornton BF, Salisbury DJ, Tjernström M, Anderson LG, Geibel MC, Humborg C (2017) Direct determination of the air-sea CO2 gas transfer velocity in Arctic sea ice regions. Geophys Res Lett 44(8):3770–3778

    Article  CAS  Google Scholar 

  • Qin Z, Su G-L, Yu Q, Hu B-M, Li J (2005a) Modeling water and carbon fluxes above summer maize field in North China Plain with back-propagation neural networks. J Zhejiang Univ SCI B 6(5):418–426

    Article  Google Scholar 

  • Qin Z, Yu Q, Li J, Wu Z-Y, Hu B-M (2005b) Application of least squares vector machines in modelling water vapor and carbon dioxide fluxes over a cropland. J Zhejiang Univ SCI B 6(6):491–495

    Article  Google Scholar 

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Renfrew IA, Moore GWK, Kristjánsson JE, Ólafsson H, Gray SL, Petersen GN, Bovis K, Brown PRA, Føre I, Haine T, Hay C, Irvine EA, Lawrence A, Ohigashi T, Outten S, Pickart RS, Shapiro M, Sproson D, Swinbank R, Woolley A, Zhang S (2008) The greenland flow distortion experiment. Bull Am Meteorol Soc 89(9):1307–1324

    Article  Google Scholar 

  • Renfrew IA, Elvidge AD, Edwards JM (2019) Atmospheric sensitivity to marginal-ice-zone drag: local and global responses. Q J R Meteorol Soc 145(720):1165–1179

    Article  Google Scholar 

  • Ripley BD (1996) Feed-forward neural networks. Pattern recognition and neural networks. Cambridge University Press, Cambridge, pp 143–180

    Google Scholar 

  • Rothrock DA, Yu Y, Maykut GA (1999) Thinning of the Arctic sea-ice cover. Geophys Res Lett 26(23):3469–3472

    Article  Google Scholar 

  • Safa B, Arkebauer TJ, Zhu Q, Suyker A, Irmak S (2018) Latent heat and sensible heat flux simulation in maize using artificial neural networks. Comput Electron Agric 154:155–164

    Article  Google Scholar 

  • Sandu I, Beljaars A, Bechtold P, Mauritsen T, Balsamo G (2013) Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? J Adv Model Earth Syst 5(2):117–133

    Article  Google Scholar 

  • Screen JA, Simmonds I (2010) The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464(7293):1334–1337

    Article  CAS  Google Scholar 

  • Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Global Planet Chang 77(1):85–96

    Article  Google Scholar 

  • Serreze MC, Francis JA (2006) The Arctic amplification debate. Clim Chang 76(3):241–264

    Article  CAS  Google Scholar 

  • Serreze MC, Barrett AP, Stroeve JC, Kindig DN, Holland MM (2009) The emergence of surface-based Arctic amplification. Cryosphere 3(1):11–19

    Article  Google Scholar 

  • Shanno DF (1970) Conditioning of quasi-Newton methods for function minimization. Math Comput 24(111):647–656

    Article  Google Scholar 

  • Shupe MD, Rex M, Blomquist B, Persson POG, Schmale J, Uttal T, Althausen D, Angot H, Archer S, Bariteau L, Beck I, Bilberry J, Bucci S, Buck C, Boyer M, Brasseur Z, Brooks IM, Calmer R, Cassano J, Castro V, Chu D, Costa D, Cox CJ, Creamean J, Crewell S, Dahlke S, Damm E, de Boer G, Deckelmann H, Dethloff K, Dütsch M, Ebell K, Ehrlich A, Ellis J, Engelmann R, Fong AA, Frey MM, Gallagher MR, Ganzeveld L, Gradinger R, Graeser J, Greenamyer V, Griesche H, Griffiths S, Hamilton J, Heinemann G, Helmig D, Herber A, Heuzé C, Hofer J, Houchens T, Howard D, Inoue J, Jacobi H-W, Jaiser R, Jokinen T, Jourdan O, Jozef G, King W, Kirchgaessner A, Klingebiel M, Krassovski M, Krumpen T, Lampert A, Landing W, Laurila T, Lawrence D, Lonardi M, Loose B, Lüpkes C, Maahn M, Macke A, Maslowski W, Marsay C, Maturilli M, Mech M, Morris S, Moser M, Nicolaus M, Ortega P, Osborn J, Pätzold F, Perovich DK, Petäjä T, Pilz C, Pirazzini R, Posman K, Powers H, Pratt KA, Preußer A, Quéléver L, Radenz M, Rabe B, Rinke A, Sachs T, Schulz A, Siebert H, Silva T, Solomon A, Sommerfeld A, Spreen G, Stephens M, Stohl A, Svensson G, Uin J, Viegas J, Voigt C, von der Gathen P, Wehner B, Welker JM, Wendisch M, Werner M, Xie Z, Yue F (2022) Overview of the MOSAiC expedition: atmosphere. Elementa Sci Anthropocene 10(1):00060

    Article  Google Scholar 

  • Sotiropoulou G, Tjernström M, Sedlar J, Achtert P, Brooks BJ, Brooks IM, Persson POG, Prytherch J, Salisbury DJ, Shupe MD, Johnston PE, Wolfe D (2016) Atmospheric conditions during the Arctic clouds in summer experiment (ACSE): contrasting open water and sea ice surfaces during melt and freeze-up seasons. J Clim 29(24):8721–8744

    Article  Google Scholar 

  • Srivastava P, Brooks IM, Prytherch J, Salisbury DJ, Elvidge AD, Renfrew IA, Yelland MJ (2022) Ship-based estimates of momentum transfer coefficient over sea ice and recommendations for its parameterization. Atmos Chem Phys 22(7):4763–4778

    Article  CAS  Google Scholar 

  • Svensson G, Holtslag AAM, Kumar V, Mauritsen T, Steeneveld GJ, Angevine WM, Bazile E, Beljaars A, de Bruijn EIF, Cheng A, Conangla L, Cuxart J, Ek M, Falk MJ, Freedman F, Kitagawa H, Larson VE, Lock A, Mailhot J, Masson V, Park S, Pleim J, Söderberg S, Weng W, Zampieri M (2011) Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single-column models: the second GABLS experiment. Boundary-Layer Meteorol 140(2):177–206

    Article  Google Scholar 

  • Thornton BF, Prytherch J, Andersson K, Brooks IM, Salisbury D, Tjernström M, Crill PM (2020) Shipborne eddy covariance observations of methane fluxes constrain Arctic sea emissions. Sci Adv 6(5):eaay7934

  • Tjernström M, Jakobsson M (2021) Data from expedition Arctic Ocean, 2016

  • Tynan E (2015) Effects of sea-ice loss. Nat Clim Chang 5(7):621–621

    Article  Google Scholar 

  • Udrescu S-M, Tegmark M (2020) AI Feynman: a physics-inspired method for symbolic regression. Sci Adv 6(16):eaay2631

  • Uttal T, Curry JA, McPhee MG, Perovich DK, Moritz RE, Maslanik JA, Guest PS, Stern HL, Moore JA, Turenne R, Heiberg A, Serreze MC, Wylie DP, Persson OG, Paulson CA, Halle C, Morison JH, Wheeler PA, Makshtas A, Welch H, Shupe MD, Intrieri JM, Stamnes K, Lindsey RW, Pinkel R, Pegau WS, Stanton TP, Grenfeld TC (2002) Surface heat budget of the Arctic Ocean. Bull Am Meteorol Soc 83(2):255–276

    Article  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S. Statistics and computing, Springer, New York

    Book  Google Scholar 

  • Vihma T (1995) Subgrid parameterization of surface heat and momentum fluxes over polar oceans. J Geophys Res Oceans 100(C11):22625–22646

    Article  Google Scholar 

  • Vihma T, Pirazzini R, Fer I, Renfrew IA, Sedlar J, Tjernström M, Lüpkes C, Nygård T, Notz D, Weiss J, Marsan D, Cheng B, Birnbaum G, Gerland S, Chechin D, Gascard JC (2014) Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review. Atmos Chem Phys 14(17):9403–9450

    Article  CAS  Google Scholar 

  • Voldoire A, Saint-Martin D, Sénési S, Decharme B, Alias A, Chevallier M, Colin J, Guérémy J-F, Michou M, Moine M-P, Nabat P, Roehrig R, Salas y Mélia, D., Séférian, R., Valcke, S., Beau, I., Belamari, S., Berthet, S., Cassou, C., Cattiaux, J., Deshayes, J., Douville, H., Ethé, C., Franchistéguy, L., Geoffroy, O., Lévy, C., Madec, G., Meurdesoif, Y., Msadek, R., Ribes, A., Sanchez-Gomez, E., Terray, L., and Waldman, R. (2019) Evaluation of CMIP6 DECK experiments with CNRM-CM6-1. J Adv Model Earth Syst 11(7):2177–2213

  • Wang X, Yao Y, Zhao S, Jia K, Zhang X, Zhang Y, Zhang L, Xu J, Chen X (2017) MODIS-based estimation of terrestrial latent heat flux over North America using three machine learning algorithms. Remote Sens 9(12):1326

    Article  CAS  Google Scholar 

  • Wang L, Zhang Y, Yao Y, Xiao Z, Shang K, Guo X, Yang J, Xue S, Wang J (2021) GBRT-based estimation of terrestrial latent heat flux in the Haihe river basin from satellite and reanalysis datasets. Remote Sens 13(6):1054

    Article  Google Scholar 

  • Wulfmeyer V, Pineda JMV, Otte S, Karlbauer M, Butz MV, Lee TR, Rajtschan V (2022) Estimation of the surface fluxes for heat and momentum in unstable conditions with machine learning and similarity approaches for the LAFE data set. Boundary-Layer Meteorol 186:337

    Article  Google Scholar 

  • Xu T, Guo Z, Liu S, He X, Meng Y, Xu Z, Xia Y, Xiao J, Zhang Y, Ma Y, Song L (2018) Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale. J Geophys Res Atmos 123(16):8674–8690

    Article  Google Scholar 

  • Zhao WL, Gentine P, Reichstein M, Zhang Y, Zhou S, Wen Y, Lin C, Li X, Qiu GY (2019) Physics-constrained machine learning of evapotranspiration. Geophys Res Lett 46(24):14496–14507

    Article  Google Scholar 

Download references

Acknowledgements

This is a contribution to the Year of Polar Prediction (YOPP), a flagship activity of the Polar Prediction Project (PPP), initiated by the World Weather Research Programme (WWRP) of the World Meteorological Organisation (WMO). We acknowledge the WMO WWRP for its role in coordinating this international research activity. The SHEBA data were provided by NCAR/EOL under the sponsorship of the National Science Foundation. We gratefully acknowledge the SHEBA Atmospheric Surface Flux Group (ASFG), who were responsible for the surface flux measurements during the SHEBA project (E. L. Andreas, C. W. Fairall, P. S. Guest and P. O. G. Persson). The neural-network architecture schematic in Fig. 1 was created using the plotnet function in the NeuralNetTools package for R (Beck 2018). Fitting of neural-network ensembles was automated with the help of wrapper functions in the R package caret (Kuhn and Johnson 2013). Bootstrapped significance testing of performance-metric differences was performed using the R package boot (Canty and Ripley 2022; Davison and Hinkley 1997). We thank the three anonymous reviewers for their thoughtful comments and suggestions, which helped improve the manuscript.

Funding

This work was supported by a national funding by the Agence Nationale de la Recherche within the framework of the Investissement d’Avenir programme under the ANR-17-MPGA-0003 ASET reference. This article has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101003826 via project CRiceS (Climate Relevant interactions and feedbacks: the key role of sea ice and Snow in the polar and global climate system). The ACCACIA field campaign was supported by the UK Natural Environment Research Council (NERC) grant numbers NE/I028653/1, NE/I028858/1, and NE/I028297/1. The participation of Ian Brooks and John Prytherch in the ACSE field campaign was supported by NERC grant number NE/K011820/1. The AO16 measurements were supported by the the Swedish Polar Research Secretariat. John Prytherch was also supported by the Knut and Alice Wallenberg Foundation (grant number 2016-0024).

Author information

Authors and Affiliations

Authors

Contributions

IMB, IAR, ADE and JP provided the ACCACIA, ACSE and AO16 data. VG built a local database from all the observational campaigns and implemented the bulk algorithm in Python. VG and SB advised on the bulk methodology and physical choices. DPC carried out all the analyses. DPC wrote the article with VG. All authors reviewed and provided feedback on the manuscript.

Corresponding author

Correspondence to Donald P. Cummins.

Ethics declarations

Ethical approval

This declaration is not applicable.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 6622 KB)

A: Polar-Specific Bulk Parametrizations

A: Polar-Specific Bulk Parametrizations

1.1 A.1 Stability Correction of Grachev et al. (2007)

Grachev et al. (2007) assumed the form of the vertical profiles to be:

$$\begin{aligned} a(z) = p_1 (\ln z)^2 + p_2 \ln (z) + p_3, \end{aligned}$$
(8)

where a can be the wind speed, potential temperature, specific humidity, or any other variable, and \(p_1\), \(p_2\), \(p_3\) are constants to be determined. By taking the derivative of eqn (8), the vertical gradients can be obtained through a fit to observations. Using data from the SHEBA tower, Grachev et al. (2007) proposed the “SHEBA profile functions”:

$$\begin{aligned} \phi _M&= 1 + \dfrac{6.5 \zeta (1 + \zeta )^\frac{1}{3}}{1.3 + \zeta }, \end{aligned}$$
(9)
$$\begin{aligned} \phi _H&= 1 + \dfrac{5 \zeta + 5 \zeta ^2}{1 + 3 \zeta + \zeta ^2}, \end{aligned}$$
(10)

where \(\zeta \) is the Monin-Obukhov stability parameter and \(\phi _M\),\(\phi _H\) are the non-dimensional stability profile functions for momentum and sensible/latent heat respectively.

1.2 A.2 Aerodynamic Roughness Model of Andreas et al. (2010b)

Based on the SHEBA winter data, Andreas et al. (2010b) concluded that the aerodynamic roughness \(z_0\) did not significantly depend on the atmospheric stability. They proposed the following unified parametrization:

$$\begin{aligned} z_0 = 0.135 \dfrac{\nu }{u_\star } + B \tanh ^3 (13 u_\star ), \end{aligned}$$
(11)

where \(\nu \) is the kinematic viscosity of air in m2s-1 and \(B = 2.3 \times 10^{-4}\). The first term on the right models aerodynamically smooth regimes, while the second treats aerodynamically rough regimes as well as the transition from smooth to rough flows.

1.3 A.3 Scalar Roughness Model of Andreas (1987)

Andreas (1987) proposed modelling the ratio of the scalar and aerodynamic roughness lengths as a function of the roughness Reynolds number:

$$\begin{aligned} \ln \dfrac{z_s}{z_0} = b_{0,s} + b_{1,s} \ln R_\star + b_{2,s} (\ln R_\star )^2, \end{aligned}$$
(12)

where \(z_s\) is the scalar roughness for temperature (\(s=T\)) or humidity (\(s=Q\)) and \(R_\star = \frac{u_\star z_0}{\nu }\) is the roughness Reynolds number. Polynomial coefficients \(b_{i,s}\) are tabulated for smooth (\(R_\star \le 0.135\)), transitional (\(0.135< R_\star < 2.5\)) and rough (\(2.5 \le R_\star < 1000\)) surfaces in Andreas (1987).

1.4 A.4 Form Drag Parametrization

The form drag parametrization used in this study assumes that the drag coefficient \(C_D\) in eqn (1) (the bulk exchange coefficient for momentum) can be partitioned as:

$$\begin{aligned} C_{D} = C_{D,w} (1-C_i) + C_{D,i} C_i + C_{D,f}, \end{aligned}$$
(13)

where \(C_{D,w}\) and \(C_{D,i}\) denote the skin drag coefficients over water and ice respectively, \(C_i\) is the sea ice concentration, and \(C_{D,f}\) is the form drag contribution. We obtain \(C_{D,f}\) by applying a stability correction to its neutral counterpart \(C_{DN,f}\):

$$\begin{aligned} C_{DN,f} = C_{DN,f,w} (1-C_i) + C_{DN,f,i} C_i, \end{aligned}$$
(14)

where \(C_{DN,f,k}\) are form-induced drag coefficients over water (\(k=w\)) and ice (\(k=i\)). Following Lüpkes et al. (2012) and Lüpkes and Gryanik (2015), we use:

$$\begin{aligned} C_{DN,f,k} = \dfrac{c_e}{2} \left[ \dfrac{\ln \dfrac{h_{fc}}{z_{0,k}}}{\ln \dfrac{10}{z_{0,k}}} \right] ^2 \dfrac{h_{fc}}{D} (1-C_i)^\beta C_i, \end{aligned}$$
(15)

where \(c_e = 0.4\) is the effective resistance coefficient, \(h_{fc} = 0.41\) m is the ice floe freeboard, \(z_{0,k}\) is the skin drag aerodynamic roughness over water/ice, \(D = 8\) m is the average diameter of leads or melt ponds and \(\beta = 1\) is an optional exponent.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cummins, D.P., Guemas, V., Blein, S. et al. Reducing Parametrization Errors for Polar Surface Turbulent Fluxes Using Machine Learning. Boundary-Layer Meteorol 190, 13 (2024). https://doi.org/10.1007/s10546-023-00852-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10546-023-00852-8

Keywords

Navigation