Skip to main content
Log in

How do Stability Corrections Perform in the Stable Boundary Layer Over Snow?

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We assess sensible heat-flux parametrizations in stable conditions over snow surfaces by testing and developing stability correction functions for two alpine and two polar test sites. Five turbulence datasets are analyzed with respect to, (a) the validity of the Monin–Obukhov similarity theory, (b) the model performance of well-established stability corrections, and (c) the development of new univariate and multivariate stability corrections. Using a wide range of stability corrections reveals an overestimation of the turbulent sensible heat flux for high wind speeds and a generally poor performance of all investigated functions for large temperature differences between snow and the atmosphere above (>10 K). Applying the Monin–Obukhov bulk formulation introduces a mean absolute error in the sensible heat flux of \(6\,\hbox {W m}^{-2}\) (compared with heat fluxes calculated directly from eddy covariance). The stability corrections produce an additional error between 1 and \(5\,\hbox {W m}^{-2}\), with the smallest error for published stability corrections found for the Holtslag scheme. We confirm from previous studies that stability corrections need improvements for large temperature differences and wind speeds, where sensible heat fluxes are distinctly overestimated. Under these atmospheric conditions our newly developed stability corrections slightly improve the model performance. However, the differences between stability corrections are typically small when compared to the residual error, which stems from the Monin–Obukhov bulk formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andreas EL (1987) A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice. Boundary-Layer Meteorol 38:159–184

    Article  Google Scholar 

  • Andreas EL (2002) Parameterizing scalar transfer over snow and ice: a review. J Hydrometeorol 3:417–432

    Article  Google Scholar 

  • Andreas EL, Persson POG, Jordan RE, Horst TW, Guest PS, Grachev AA, Fairall CW (2010) Parameterizing turbulent exchange over sea ice in winter. J Hydrometeorol 11(1):87–104. doi:10.1175/2009JHM1102.1

    Article  Google Scholar 

  • Arck M, Scherer D (2002) Problems in the determination of sensible heat flux over snow. Geogr Ann 84 A(3–4):157–169

    Article  Google Scholar 

  • Beljaars ACM, Holtslag AAM (1991) Flux parametrization over land surfaces for atmospheric models. J Appl Meteorol 30:327–341

  • Blanc T (1987) Accuracy of bulk-method-determined flux, stability, and sea surface roughness. J Geophys Res Atmos 92:3867–3876

    Article  Google Scholar 

  • Bou-Zeid E, Higgins C, Huwald H, Meneveau C, Parlange MB (2010) Field study of the dynamics and modelling of subgridscale turbulence in a stable atmospheric surface layer over a glacier. J Fluid Mech 665:480–515

    Article  Google Scholar 

  • Conway JP, Cullen NJ (2016) Cloud effects on surface energy and mass balance in the ablation area of Brewster Glacier, New Zealand. Cryosphere 10(1):313–328. doi:10.5194/tc-10-313-2016

    Article  Google Scholar 

  • Cullen NJ, Steffen K (2001) Unstable near-surface boundary layer conditions in summer on top of the Greenland ice sheet. Geophys Res Lett 28:4491–4493. doi:10.1029/2001GL013417

    Article  Google Scholar 

  • Cullen NJ, Steffen K, Blanken PD (2007) Nonstationarity of turbulent heat fluxes at Summit, Greenland. Boundary-Layer Meteorol 122:439–455. doi:10.1007/s10546-006-9112-2

    Article  Google Scholar 

  • Cullen NJ, Mölg T, Conway J, Steffen K (2014) Assessing the role of sublimation in the dry snow zone of the Greenland ice sheet in a warming world. J Geophys Res Atmos 119:6563–6577. doi:10.1002/2014JD021557

    Article  Google Scholar 

  • Dadic R, Mott R, Lehning M, Carenzo M, Anderson B, Mackintosh A (2013) Sensitivity of turbulent fluxes to wind speed over snow surfaces in different climatic settings. Adv Water Resour 55:178–189

    Article  Google Scholar 

  • Dyer AJ (1974) A review of flux-profile relationships. Boundary-Layer Meteorol 7:363–372

    Article  Google Scholar 

  • Essery R, Granger R, Pomeroy J (2006) Boundary-layer growth and advection of heat over snow and soil patches: modelling and parameterization. Hydrol Process 20:953–967

    Article  Google Scholar 

  • Essery R, Morin S, Lejeune Y, Menard CB (2013) A comparison of 1701 snow models using observations from an alpine site. Adv Water Resour 55:131–148

    Article  Google Scholar 

  • Föhn P (1973) Short term snow melt and ablation derived from heat- and mass-balance measurements. J Glaciol 12(65):275–289

    Article  Google Scholar 

  • Funk M (1985) Räumliche Verteilung der Massenbilanz auf dem Rhonegletscher und ihre Beziehung zu Klimaelementen. Zürcher Geographische Schriften. 24:183 pp

  • Guo X, Yang K, Zhao L, Yang W, Li S, Zhu M, Yao T, Chen Y (2011) Critical evaluation of scalar roughness length parametrizations over a melting valley glacier. Boundary-Layer Meteorol 139:307–332

    Article  Google Scholar 

  • Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol 116(2):201–235. doi:10.1007/s10546-004-2729-0

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2007) SHEBA flux-profile relationships in the stable atmospheric boundary layer. Boundary-Layer Meteorol 124(3):315–333. doi:10.1007/s10546-007-9177-6

    Article  Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2013) The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Boundary-Layer Meteorol 147(1):51–82. doi:10.1007/s10546-012-9771-0

    Article  Google Scholar 

  • Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42:55–78

    Article  Google Scholar 

  • Holtslag AAM, De Bruin HAR (1988) Applied modeling of the nighttime surface energy balance over land. J Appl Meteorol 27(6):689–704

    Article  Google Scholar 

  • Huwald H, Higgins CW, Boldi MO, Bou-Zeid E, Lehning M, Parlange MB (2009) Albedo effect on radiative errors in air temperature measurements. Water Resour Res 45:W08431. doi:10.1029/2008WR007600

    Article  Google Scholar 

  • Joffre SM (1982) Momentum and heat transfers in the surface layer over a frozen sea. Boundary-Layer Meteorol 24:211–229

    Article  Google Scholar 

  • Large WG, Pond S (1982) Sensible and latent heat flux measurements over the ocean. J Phys Oceanogr 11:324–336

    Article  Google Scholar 

  • Lehning M, Bartelt P, Brown B, Fierz C (2002) A physical SNOWPACK model for the Swiss avalanche warning: Part III: meteorological forcing, thin layer formation and evaluation. Cold Reg Sci Technol 35(3):169–184

    Article  Google Scholar 

  • Marks D, Dozier J (1992) Climate and energy exchange at the snow surface in the Alpine region of the Sierra Nevada. 2. Snow cover energy balance. Water Resour Res 28(11):3043–3054

    Article  Google Scholar 

  • Martin E, Lejeune Y (1998) Turbulent fluxes above the snow surface. Ann Glaciol 26:179–183

    Article  Google Scholar 

  • Massmann WJ, Lee X (2002) Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric Forest Meteorol 113:121–144

    Article  Google Scholar 

  • Michlmayr G, Lehning M, Koboltschnig G, Holzmann H, Zappa M, Mott R, Schöner W (2008) Application of the Alpine 3D model for glacier mass balance and glacier runoff studies at Goldbergkees, Austria. Hydrol Process 22(19):3941–3949

    Article  Google Scholar 

  • Mott R, Egli L, Grünewald T, Dawes N, Manes C, Bavay M, Lehning M (2011) Micrometeorological processes driving snow ablation in an Alpine catchment. The Cryosphere 5:1083–1098

    Article  Google Scholar 

  • Mott R, Gromke C, Grünewald T, Lehning M (2013) Relative importance of advective heat transport and boundary layer decoupling in the melt dynamics of a patchy snow cover. Adv Water Resources 55:88–97

    Article  Google Scholar 

  • Mott R, Daniels M, Lehning M (2015) Atmospheric flow development and associated changes in turbulent sensible heat flux over a patchy mountain snow cover. J Hydrometeorol 16:1315–1340

    Article  Google Scholar 

  • Munro DS (1980) Exponential-linear stability correction functions for weak to moderate instability near the ground. Boundary-Layer Meteorol 19:125–131

    Article  Google Scholar 

  • Nishimura K, Nemoto M (2005) Blowing snow at Mizuho station, Antarctica. Phil Trans R Soc A 363:1647–1662

    Article  Google Scholar 

  • Obukhov AM (1946) Turbulence in an atmosphere with a non-uniform temperature. Trudy Inst Teoret Geophys Akad Nauk SSSR. 1:95-115 (translation in: Boundary-Layer Meteorol 1971. 2:7-29)

  • Plüss C, Mazzoni R (1994) The role of turbulent heat fluxes in the energy balance of high alpine snow cover. Nordic Hydrol 25:25–38

    Google Scholar 

  • Pohl S, Marsh P, Liston GE (2006) Spatial-temporal variability in turbulent fluxes during spring snowmelt. Arct Antarct Alp Res 38:136–146

    Article  Google Scholar 

  • Rannik Ü, Vesala T (1999) Autoregressive filtering versus linear detrending in estimation of fluxes by the eddy covariance method. Boundary-Layer Meteorol 91:259–280

    Article  Google Scholar 

  • Sharan M, Kumar P (2011) Estimation of upper bounds for the applicability of non-linear similarity functions for non-dimensional wind and temperature profiles in the surface layer in very stable conditions. Proc R Soc A 467(2126):473–494. doi:10.1098/rspa.2010.0220

  • Smeets CJPP, van den Broeke MR (2008b) The parameterization of scalar transfer over rough ice. Boundary-Layer Meteorol 128(3):339–355. doi:10.1007/s10546-008-9292-z

    Article  Google Scholar 

  • Sorbjan Z (2010) Gradient-based scales and similarity laws in the stable boundary layer. QJR Meteorol Soc 136(650A):1243–1254. doi:10.1002/qj.638

    Google Scholar 

  • Sorbjan Z (2016) Similarity scaling systems for stably stratified turbulent flows. QJR Meteorol Soc 142(695B):805–810. doi:10.1002/qj.2682

    Article  Google Scholar 

  • Stearns CR, Weidner GA (1993) Sensible and Latent heat flux estimates in Antarctica. Antarctic Research Series 61:109–138

    Article  Google Scholar 

  • Stössel F, Guala M, Fierz C, Manes C, Lehning M (2010) Micrometeorological and morphological observations of surface hoar dynamics on a mountain snow cover. Water Resources Res 46(4):W04511

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Acad Publishers, Dordrecht 666 pp

    Book  Google Scholar 

  • Vickers D, Mahrt L, Andreas EL (2015) Formulation of the sea surface friction velocity in terms of the mean wind and bulk stability. J Appl Meteor Climatol 54(3):691–703

    Article  Google Scholar 

  • Webb EK (1970) Profile relationships the log-linear range and extension to strong stability. QJR Meteorol Soc 96:67–90

    Article  Google Scholar 

  • Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11:2628–2644

    Article  Google Scholar 

Download references

Acknowledgements

The work was funded by Swiss National Science Foundation (Project: Snow-atmosphere interactions driving snow accumulation and ablation in an Alpine catchment: The Dischma Experiment; SNF-Grant: 200021_150146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Schlögl.

Appendix

Appendix

We used the following stability corrections (see also “Electronic Supplement Material” in Sharan and Kumar (2011) for further discussion and additional stability corrections) (Table 6):

Table 6 Stability correction functions for \({\psi }_m \) and \({\psi }_s \) used in the study

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlögl, S., Lehning, M., Nishimura, K. et al. How do Stability Corrections Perform in the Stable Boundary Layer Over Snow?. Boundary-Layer Meteorol 165, 161–180 (2017). https://doi.org/10.1007/s10546-017-0262-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-017-0262-1

Keywords

Navigation