Skip to main content
Log in

Spatial Variability of the Flow and Turbulence Within a Model Canopy

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The spatial variability of the mean flow and turbulence in and above a model canopy is investigated using three-dimensional laser Doppler velocimetry. The mean flow and turbulence are shown to be highly variable in space within the canopy but rapidly converge above the canopy. The coherent variations in the mean flow generate dispersive fluxes contributing almost a fifth to the total flux of momentum, and a greater contribution to the divergence of the flux, within the canopy. The higher-order turbulent statistics are more variable than the mean flow and often strongly correlated in space to variations in the mean flow. The implications of this microscale spatial variability for both field experiments and other laboratory experiments into canopy flow are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aubinet M, Feigenwinter C, Heinesch B, Bernhofer C, Canepa E, Lindroth A, Montagnani L, Rebmann C, Sedlak P, van Gorsel E (2010) Direct advection measurements do not help to solve the night-time \({\rm CO}_2\) closure problem: evidence from three different forests. Agric For Meteorol 150:655–664. doi:10.1016/j.agrformet.2010.01.016

    Article  Google Scholar 

  • Ayotte KW, Hughes DE (2004) Observations of boundary-layer wind-tunnel flow over isolated ridges of varying steepness and roughness. Boundary-Layer Meteorol 112:525–556. doi:10.1023/B:BOUN.0000030663.13477.51

    Article  Google Scholar 

  • Bai K, Katz J, Meneveau C (2015) Turbulent flow structure inside a canopy with complex multi-scale elements. Boundary-Layer Meteorol 155:435–457. doi:10.1007/s10546-015-0011-2

    Article  Google Scholar 

  • Baldocchi D, Falge E, Gu L, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee X, Malhi Y, Meyers T, Munger W, Oechal W, Paw-U KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapour and energy flux densities. Bull Am Meteorol Soc 82:2415–2434. doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2

  • Belcher SE, Harman IN, Finnigan JJ (2012) The wind in the willows: flows in forest canopies in complex terrain. Annu Rev Fluid Mech 44:479–504. doi:10.1146/annurev-fluid-120710-101036

    Article  Google Scholar 

  • Böhm M, Finnigan JJ, Raupach MR (2000) Dispersive fluxes and canopy flows: just how important are they? Proceedings of the conference on agricultural and forest meteorology, 24th, Davis, CA, pp 106–107. Am Meteorol Soc, Boston, MA

  • Böhm M, Finnigan JJ, Raupach MR, Hughes D (2013) Turbulence structure within and above a canopy of bluff elements. Boundary-Layer Meteorol 146(3):393–419. doi:10.1007/s10546-012-9770-1

    Article  Google Scholar 

  • Bohrer G, Katul GG, Walko RL, Avissar R (2009) Exploring the effects of microscale structural heterogeneity of forest canopies using large-eddy simulations. Boundary-Layer Meteorol 132:351–382. doi:10.1007/s10546-009-9404-4

    Article  Google Scholar 

  • Buchhave P, George WK Jr, Lumley JL (1979) The measurement of turbulence with the laser-Doppler anemometer. Annu Rev Fluid Mech 11:443–503

    Article  Google Scholar 

  • Coceal O, Thomas TG, Belcher SE (2007) Spatial variability of flow statistics within regular building arrays. Boundary-Layer Meteorol 125:537–552. doi:10.1007/s10546-007-9206-5

    Article  Google Scholar 

  • Coppin PA, Raupach MR, Legg BJ (1986) Experiments on scalar dispersion within a model plant canopy. Part II: an elevated plane source. Boundary-Layer Meteorol 35:167–191. doi:10.1007/BF00117300

    Article  Google Scholar 

  • Dantec Dynamics (2006) BSA flow software, version 4.10: installation and users guide. Publication number 9040US734, Skovlunde, Denmark

  • Dupont S, Brunet Y (2008) Edge flow and canopy structure: a large-eddy simulation study. Boundary-Layer Meteorol 126:51–71. doi:10.1007/s10546-007-9216-3

    Article  Google Scholar 

  • Dupont S, Brunet Y (2009) Coherent structures in canopy edge flow: a large-eddy simulation study. J Fluid Mech 630:93–128. doi:10.1007/s10546-007-9216-3

    Article  Google Scholar 

  • Dupont S, Patton EG (2012) Influence of stability and seasonal canopy changes on micrometeorology within and above an orchard canopy: The CHATS experiment. Agric For Meteorol 157:11–29. doi:10.1016/j.agrformet.2012.01.011

    Article  Google Scholar 

  • Dupont S, Bonnefond JM, Irvine M, Lamaud E, Brunet Y (2011) Long-distance edge effects in a pine forest with a deep and sparse trunk space: in situ and numerical experiments. Agric For Meteorol 151:328–344. doi:10.1016/j.agrformet.2010.11.007

    Article  Google Scholar 

  • Edwards RV (1987) Report of the special panel on statistical particle bias problems in laser anemometry. J Fluids Eng 109(2):89–93

    Article  Google Scholar 

  • Finnigan J (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32:519–571. doi:10.1146/annurev.fluid.32.1.519

    Article  Google Scholar 

  • Finnigan JJ, Brunet Y (1995) Turbulent airflow in forests on flat and hilly terrain. In: Coutt MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, UK, pp 3–40

    Chapter  Google Scholar 

  • Finnigan JJ, Shaw RH (2008) Double-averaging methodology and its application to turbulent flow in and above vegetation canopies. Acta Geophys 56:534–561. doi:10.2478/s11600-008-0034-x

    Article  Google Scholar 

  • Finnigan JJ, Shaw RH, Patton EG (2008) Turbulence structure above a vegetation canopy. J Fluid Mech 637:387–424. doi:10.1017/S0022112009990589

    Article  Google Scholar 

  • Finnigan JJ, Raupach MR, Bradley EF, Aldis GK (1990) A wind tunnel study of flow over a two-dimensional ridge. Boundary-Layer Meteorol 50:277–317. doi:10.1007/BF00120527

    Article  Google Scholar 

  • Ghannam K, Poggi D, Porporato A, Katul GG (2015) The spatio-temporal statistical structure and ergodic behaviour of scalar turbulence within a rod canopy. Boundary-Layer Meteorol 157:447–460. doi:10.1007/s10546-015-0073-1

    Article  Google Scholar 

  • Garratt JR (1994) The atmospheric boundary layer. Cambridge University Press, Cambridge, UK and New York, USA 316 pp

    Google Scholar 

  • Harman IN, Finnigan JJ (2007) A simple unified theory for flow in the canopy and roughness sublayer. Boundary-Layer Meteorol 123:339–363. doi:10.1007/s10546-006-9145-6

    Article  Google Scholar 

  • Harman IN, Finnigan (2013) Flow over a narrow ridge covered with a plant canopy: a comparison between wind-tunnel observations and linear theory. Boundary-Layer Meteorol 147:1–20. doi:10.1007/s10546-012-9779-5

    Article  Google Scholar 

  • Haverd V, Leuning R, Griffith D, van Gorsel E, Cuntz M (2009) The turbulent Lagrangian time scale in forest canopies constrained by fluxes, concentrations and source distributions. Boundary-Layer Meteorol 130:209–228. doi:10.1007/s10546-008-9344-4

    Article  Google Scholar 

  • Jimenez J (2004) Turbulent flows over rough walls. Annu Rev Fluid Mech 36:173–196. doi:10.1146/annurev.fluid.36.050802.122103

    Article  Google Scholar 

  • Karl T, Potosnak M, Guenther A, Clark D, Walker J, Herrick JD, Geron C (2004) Exchange processes of volatile organic compounds above a tropical rain forest: implications for modelling tropospheric chemistry above dense vegetation. J Geophys Res 109:D18306. doi:10.1029/2004JD004738

    Article  Google Scholar 

  • Legg BJ, Raupach MR, Coppin PA (1986) Experiments on scalar dispersion within a model plant canopy. Part III: an elevated line source. Boundary-Layer Meteorol 35:277–302. doi:10.1007/BF00123645

    Article  Google Scholar 

  • Lenschow DH, Mann J, Kristensen L (1994) How long is long enough when measuring fluxes and other turbulent statistics. J Atmos Oceanic Technol 11:661–673. doi:10.1175/1520-0426(1994)011<0661:HLILEW>2.0.CO;2

  • Leuning R, Zegelin SJ, Jones K, Keith H, Hughes D (2008) Measurement of horizontal and vertical advection of \({\rm CO}_2\) within a forest canopy. Agric For Meteorol 148:1777–1797. doi:10.1016/j.agrformet.2008.06.006

    Article  Google Scholar 

  • Massman WJ, Weil JC (1999) An analytical one-dimensional second-order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure. Boundary-Layer Meteorol 91:81–107. doi:10.1023/A:1001810204560

    Article  Google Scholar 

  • Moltchanov S, Bohbot-Raviv Y, Shavit U (2011) Dispersive stresses at the canopy upstream edge. Boundary-Layer Meteorol 139:333–351. doi:10.1007/s10546-010-9582-0

    Article  Google Scholar 

  • Morse AP, Gardiner BA, Marshall BJ (2002) Mechanisms controlling turbulence development across a forest edge. Boundary-Layer Meteorol 103:227–251. doi:10.1023/A:1014507727784

    Article  Google Scholar 

  • Patton EG, Katul GG (2009) Turbulent pressure and velocity perturbations induced by gentle hills covered by sparse and dense canopies. Boundary-Layer Meteorol 133:189–217. doi:10.1007/s10546-009-9427-x

    Article  Google Scholar 

  • Patton EG, Horst TW, Sullivan PP, Lenschow DH, Oncley SP, Brown WOJ, Burns SP, Guenther AB, Held A, Karl T, Mayor SD, Rizzo LV, Spuler SM, Sun J, Turnipseed AA, Allwine EJ, Edburg SL, Lamb BK, Avissar R, Calhoun RJ, Kleissl J, Massman WJ, Paw UKT, Weil JC (2011) The canopy horizontal array turbulence study (CHATS). Bull Am Meteorol Soc 92:583–592. doi:10.1175/2010BAMS2614.1

    Article  Google Scholar 

  • Poggi D, Katul GG (2007a) The ejection-sweep cycle over bare and forested gentle hills: a laboratory experiment. Boundary-Layer Meteorol 122:493–515. doi:10.1007/s10546-006-9117-x

    Article  Google Scholar 

  • Poggi D, Katul GG (2007b) An experimental investigation of the mean momentum budget inside dense canopies on narrow gentle hilly terrain. Agric For Meteorol 144:1–13. doi:10.1016/j.agrformet.2007.01.009

  • Poggi D, Katul GG (2007c) Turbulent flows on forested hilly terrain: the recirculation region. Q J R Meteorol Soc 133:1027–1039. doi:10.1002/qj.73

    Article  Google Scholar 

  • Poggi D, Katul GG (2008a) Micro- and macro-dispersive fluxes in canopy flows. Acta Geophys 56:778–800. doi:10.2478/s11600-008-0029-7

    Article  Google Scholar 

  • Poggi D, Katul GG (2008b) The effect of canopy roughness density on the constitutive components of the dispersive stresses. Exp Fluids 45:111–121. doi:10.1007/s00348-008-0467-7

    Article  Google Scholar 

  • Poggi D, Katul GG, Albertson JD (2004) A note on the contribution of dispersive fluxes to momentum transfer within canopies. Boundary-Layer Meteorol 111:615–621. doi:10.1023/B:BOUN.0000016563.76874.47

    Article  Google Scholar 

  • Pokrajac D, Finnigan JJ, Manes C, McEwan I, Nikora V (2006) On the definition of the shear velocity in rough bed open channel flows. In: Proceedings and monographs in engineering, water and earth sciences, Ferreira RML, Alves CTL, Leal GAB, Cardoro AH (eds). River Flow 1&2:89–98

  • Raupach MR (1989) A practical Lagrangian method for relating scalar concentrations to source distributions in vegetation canopies. Q J R Meteorol Soc 115:609–632. doi:10.1256/smsqj.48709

    Article  Google Scholar 

  • Raupach MR, Shaw RH (1982) Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol 22:79–90. doi:10.1007/BF00128057

    Article  Google Scholar 

  • Raupach MR, Coppin PA, Legg BJ (1986) Experiments within a model plant canopy. Part I: the turbulence structure. Boundary-Layer Meteorol 35:21–52. doi:10.1007/BF00117300

    Article  Google Scholar 

  • Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing layer analogy. Boundary-Layer Meteorol 22:79–90. doi:10.1007/BF00120941

    Article  Google Scholar 

  • Raupach MR, Hughes DE, Cleugh HA (2006) Momentum absorption in rough-wall boundary layers with sparse roughness elements in random and clustered distributions. Boundary-Layer Meteorol 120:201–218. doi:10.1007/s10546-006-9058-4

    Article  Google Scholar 

  • Rominger JT, Nepf HM (2011) Flow adjustment and interior flow at a finite porous obstruction. J Fluid Mech 680:636–659. doi:10.1017/jfm.2011.199

    Article  Google Scholar 

  • Seginer I, Mulhearn PJ, Bradley EF, Finnigan JJ (1976) Turbulent flow in a model plant canopy. Boundary-Layer Meteorol 10:423–453

    Article  Google Scholar 

  • Schlegel F, Stiller J, Bienert A, Maas HG, Queck R, Bernhofer C (2015) Large-eddy simulation study of the effects on flow of a heterogeneous forest at sub-tree resolution. Boundary-Layer Meteorol 154:27–56. doi:10.1007/s10546-014-9962-y

    Article  Google Scholar 

  • Schmid HP, Cleugh HA, Grimmond CSB, Oke TR (1991) Spatial variability of energy fluxes in suburban terrain. Boundary-Layer Meteorol 54:249–276

    Article  Google Scholar 

  • Siqueira MB, Lai CT, Katul GG (2000) Estimating scalar sources, sinks, and fluxes in a forest canopy using Lagrangian, Eulerian and hybrid inverse models. J Geophys Res 105:29475–29488. doi:10.1029/2000JD900543

    Article  Google Scholar 

  • White BL, Nepf HM (2003) Scalar transport in random cylinder arrays at moderate Reynolds number. J Fluid Mech 487:43–79. doi:10.1017/S0022112003004579

    Article  Google Scholar 

  • Wooding RA (1968) A low-speed wind-tunnel for model studies in micrometeorology. I. The Pye laboratory wind-tunnel technical paper, 25. Australian CSIRO Division of Plant Industry, 39 pp

  • Yaglom AM (1979) Similarity laws for constant-pressure and pressure-gradient turbulent wall flows. Annu Rev Fluid Mech 11:505–540

    Article  Google Scholar 

  • Yang B, Raupach MR, Shaw RH, Paw UKT, Morse AP (2006) Large-eddy simulation of turbulent flow across a forest edge. Part I: flow statistics. Boundary-Layer Meteorol 120:377–412. doi:10.1007/s10546-006-9057-5

    Article  Google Scholar 

  • Yue WS, Parlange MB, Meneveau C, Zhu WH, van Hout R, Katz J (2007) Large-eddy simulation of plant canopy flows using plant-scale representation. Boundary-Layer Meteorol 124:183–203. doi:10.1007/s10546-007-9173-x

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Drs Barry Gardiner and Sylvain Dupont for helpful discussions around the interpretation of the LDV data. The experiments were conducted while Dr Margi Böhm was employed by ESTeM, University of Canberra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian N. Harman.

Appendix: Reduced Sampling to Approximate Spatial Averaging

Appendix: Reduced Sampling to Approximate Spatial Averaging

The experiment discussed is the first in (and the reference for) a series of experiments considering canopy flows and turbulence in complex terrain. Sampling at 20 heights and at 80 positions around every location in a complex terrain experiment is too time consuming to be practical when the flow is inhomogeneous on scales larger than the element spacing. Furthermore, the form of the spatial average needs reconsideration if the spatial scales of the complex terrain (e.g. hill length, patch size) or those of the induced perturbations in the flow are comparable to the scale of the repeating canopy unit.

To circumvent the practical aspect of these issues a reduced sampling strategy has been sought, using the detailed spatial sampling experiment as its reference. In Fig. 8 we show the vertical profiles of the spatial average of six flow statistics (\(\langle \overline{u}\rangle \), \(\langle \overline{w}\rangle \), \(\langle \overline{u'w'}\rangle \), \(\textit{TKE}\), \(\langle Sk_u\rangle \) and \(\langle Sk_w\rangle \)) and compare these to proxies obtained through two reduced sampling methodologies. The first proxy is a six-profile average where the individual profiles are spaced equi-distantly along the centre line of the canopy repeating unit (as indicated by the locations marked by \(\times \) in Fig. 1). The second proxy is a four-profile average where, again, the individual profiles spaced equi-distantly on the centre line (marked by \(+\) in Fig. 1). Positions marked by are common to both reduced sampling strategies. Alternative sampling and/or weighting options are possible; however, these line averages are the simplest (whilst maintaining symmetric sampling) and most practical options available to estimate the true spatial averages over this surface.

Fig. 8
figure 8

Comparison of the spatially-averaged flow statistics as quantified through three sampling strategies. The upper panels show (left to right) the streamwise component of the mean wind vector, \(\overline{u}\), the vertical component of the mean wind vector, \(\overline{w}\), and the turbulent vertical flux of streamwise momentum, \(\overline{u'w'}\). The lower panels show (left to right) the TKE, \(Sk_u\) and \(\textit{Sk}_w\). On each panel the solid line (with thin solid error bars) marks the full spatial average with the error bars marking the IQR of the 80 profile spatial sample. The triangle markers show the minimum and maximum values of the 80 profile spatial sample. The dash-dotted line marks the average of the six-profile average (positions as marked by \(\times \) in Fig. 1) and the dashed line the four-profile average (positions as marked by \(+\) in Fig. 1)

Figure 8 illustrates that both reduced sampling strategies are able to reproduce the broad character of these and many other (not shown) turbulent statistics. Both proxies are remarkably accurate as approximations to the full spatial average, usually lying within the inter-quartile range of the 80-profile spatial sample. The six-profile average only ranges outside the spatial IQR for \(\langle \overline{w}\rangle \) at three heights; the four-profile average similarly only ranges outside the IQR for \(\langle \overline{w}\rangle \) and \(\langle Sk_u\rangle \) at isolated heights. For most applications this agreement between the full spatial average and either the four- or six-profile averages would be sufficient. The discrepancy on \(\langle \overline{w}\rangle \) is important, however, as it implies that care will be required when interpreting this important aspect of any observed response of the mean flow to complex terrain, especially when placing in the context of theory (e.g. Harman and Finnigan 2013) or mass balance calculations. A reduced sampling strategy will also be unable to fully address questions concerning any systematic variation of the degree of spatial variability with position in complex terrain (see Moltchanov et al. 2011). Finally we note that the efficacy of these reduced sampling strategies for this surface does not imply that the same strategy applies to other each experimental surfaces. Ideally, if not practically possible, such sampling strategies need to be assessed experiment by experiment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harman, I.N., Böhm, M., Finnigan, J.J. et al. Spatial Variability of the Flow and Turbulence Within a Model Canopy. Boundary-Layer Meteorol 160, 375–396 (2016). https://doi.org/10.1007/s10546-016-0150-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-016-0150-0

Keywords

Navigation