Skip to main content
Log in

Large-eddy Simulation of Turbulent Flow Across a Forest Edge. Part I: Flow Statistics

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The statistics of turbulent flow across a forest edge have been examined using large-eddy simulation, and results compared with field and wind-tunnel observations. The moorland-to-forest transition is characterized by flow deceleration in the streamwise direction, upward distortion of the mean flow, formation of a high pressure zone immediately in front of the edge, suppression of the standard deviations and covariance of velocity components, and enhancement of velocity skewnesses. For the selected forest density, it is observed that the maximum distortion angle is about 8 degrees from the horizontal. Instead of approaching a downwind equilibrium state in a monotonic manner, turbulence (standard deviations and covariances of velocity components) and mean streamwise velocity undershoot in the transition zone behind the edge. Evolution of flow statistics clearly reveals the growth of an internal boundary layer, and the establishment of an equilibrium layer downwind of the edge. It is evident that lower-order moments generally adjust more quickly over the new rough surface than do higher-order moments. We also show that the streamwise velocity standard deviation at canopy height starts its recovery over the rough surface sooner than does the vertical velocity standard deviation, but completes full adjustment later than the latter. Despite the limited domain size upstream of the edge, large-eddy simulation has successfully reproduced turbulent statistics in good agreement with field and wind-tunnel measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonia R.A., Luxton R.E. (1971), ‘The Response of a Turbulent Boundary Layer to a Step Change in Surface Roughness, Part 1. Smooth to Rough’. J. Fluid Mech. 48, 721–761

    Article  Google Scholar 

  • Antonia R.A., Luxton R.E. (1972), ‘The Response of a Turbulent Boundary Layer to a Step Change in Surface Roughness, Part 2. Rough to Smooth’. J. Fluid Mech. 53, 737–757

    Article  Google Scholar 

  • Baldocchi D.D., Meyers T.P. (1988), ‘Turbulence Structure in a Deciduous Forest’. Boundary-Layer Meteorol. 43, 345–364

    Article  Google Scholar 

  • Belcher S.E., Xu D.P., Hunt J.C.R. (1990), ‘The Response of a Turbulent Boundary Layer to Arbitrarily Distributed Two-Dimensional Roughness Changes’. Quart. J. Roy. Meteorol. Soc. 116, 611–635

    Article  Google Scholar 

  • Bradley E.F. (1968), ‘A Micrometeorological Study of Velocity Profiles and Surface Drag in the Region Modified by a Change in Surface Roughness’. Quart. J. Roy. Meteorol. Soc. 94, 361–379

    Article  Google Scholar 

  • Breugel P.B., van Klaassen W., Moors E.J. (1999), ‘Fetch Requirements near a Forest Edge’. Phys. Chem. Earth(B) 24(1–2): 125–131

    Google Scholar 

  • Brunet Y., Finnigan J.J., Raupach M.R. (1994), ‘A Wind Tunnel Study of Air Flow in Waving Wheat: Single-Point Velocity Statistics’. Boundary-Layer Meteorol. 70, 95–132

    Article  Google Scholar 

  • Chen, J. M., Black, T. A., Novak, M. D., and Adams, R. S. 1995, ‘ A Wind Tunnel Study of Turbulent Airflow in Forest Clearcuts’, in M. P. Coutts, and J. Grace (eds.), Wind and Trees, Cambridge University Press, pp. 71–87.

  • Cheng H., Castro I.P. (2002), ‘Near-Wall Flow Development after a Step Change in Surface Roughness’. Boundary-Layer Meteorol. 105, 411–432

    Article  Google Scholar 

  • Claussen M. (1987), ‘The Flow in a Turbulent Boundary Layer Upstream of a Change in Surface Roughness’. Boundary-Layer Meteorol. 40, 31–86

    Article  Google Scholar 

  • Deardorff J.W. (1980), ‘Stratocumulus-Capped Mixed Layers Derived from a Three-Dimensional Model’. Boundary-Layer Meteorol. 18, 495–527

    Article  Google Scholar 

  • Flesch T.K., Wilson J.D. (1999a), ‘Wind and Remnant Tree Sway in Forest Cutblocks, I. Measured Winds in Experimental Cutblocks’. Agric. For. Meteorol. 93, 229–242

    Article  Google Scholar 

  • Flesch T.K., Wilson J.D. (1999b), ‘Wind and Remnant Tree Sway in Forest Cutblocks, II. Relating Measured Tree Sway to Wind Statistics’. Agric. For. Meteorol. 93, 243–258

    Article  Google Scholar 

  • Gao W., Shaw R.H., Paw U.K.T. (1989), ‘Observation of Organized Structure in Turbulent Flow within and above a Forest Canopy’. Boundary-Layer Meteorol. 47, 349–377

    Article  Google Scholar 

  • Gardiner B.A. (1995), ‘ The Interactions of Wind and Tree Movement in Forest Canopies’, in M. P. Coutts, and J. Grace (eds.), Wind and Trees, Cambridge University Press, pp. 41–59.

  • Garratt J.R. (1990), ‘The Internal Boundary Layer – A Review’. Boundary-Layer Meteorol. 50, 171–203

    Article  Google Scholar 

  • Gash J.H.C. (1986), ‘Observations of Turbulence Downwind of a Forest-Heath Interface’. Boundary-Layer Meteorol. 36, 227–237

    Article  Google Scholar 

  • Germano M., Piomelli U., Moin P., Cabot W.H. (1991), ‘A Dynamic Subgrid-Scale Eddy Viscosity Model’. Phys. Fluids A 3, 1760–1765

    Article  Google Scholar 

  • Irvine M.R., Gardiner B.A., Hill M.K. (1997), ‘The Evolution of Turbulence across a Forest Edge’. Boundary-Layer Meteorol. 84, 467–496

    Article  Google Scholar 

  • Jackson P.S., Hunt J.C.R. (1975), ‘Turbulent Wind Flow over a Low Hill’. Quart. J. Roy. Meteorol. Soc. 101, 929–955

    Article  Google Scholar 

  • Klaassen W. (1992), ‘Average Fluxes from Heterogeneous Vegetated Regions’. Boundary-Layer Meteorol. 58, 329–354

    Article  Google Scholar 

  • Kruijt, B., Klaassen, W., and Hutjes, R. W. A. 1995, ‘Edge Effects on Diffusivity in the Roughness Layer over a Forest’, in M. P. Coutts and J. Grace (eds.), Wind and Trees, Cambridge University Press, pp. 60–70.

  • Lee X. (2000), ‘Air Motion within and above Forest Vegetation in Non-Ideal Conditions’. For. Ecol. Manage. 135, 3–18

    Article  Google Scholar 

  • Legg B.J., Coppin P.A., Raupach M.R. (1984), ‘A Three-Hot-Wire Anemometer for Measuring Two Velocity Components in High-Intensity Turbulent Boundary Layers’. J. Phys. E 17, 970–976

    Article  Google Scholar 

  • Li Z., Lin J.D., Miller D.R. (1990), ‘Air Flow over and through a Forest Edge: A Steady-State Numerical Simulation’. Boundary-Layer Meteorol. 51, 179–197

    Article  Google Scholar 

  • Liu J., Chen J.M., Black T.A., Novak M.D. (1996), ‘Modelling of Turbulent Air Flow Downwind of a Model Forest Edge’. Boundary-Layer Meteorol. 77, 21–44

    Article  Google Scholar 

  • Mason P.J. (1988), ‘The Formation of Areally-Averaged Roughness Lengths’. Quart. J. Roy. Meteorol. Soc. 114, 399–420

    Article  Google Scholar 

  • Mason P.J., Thomson D.J. (1992), ‘Stochastic Backscatter in Large-Eddy Simulations of Boundary Layers’. J. Fluid Mech. 242, 51–78

    Article  Google Scholar 

  • Miller D.R., Lin J.D., Lu Z.N. (1991), ‘Air Flow across an Alpine Forest Clearing: A Model and Field Measurements’. Agric. For. Meteorol. 56, 209–225

    Article  Google Scholar 

  • Miller D.R., Stoughton T.E. (2000), ‘Response of Spray Drift from Aerial Applications at a Forest Edge to Atmospheric Stability’. Agric. For. Meteorol. 100, 49–58

    Article  Google Scholar 

  • Mitchell S.J., Hailemariam T., Kulis Y. (2001), ‘Empirical Modeling of Cutblock Edge Windthrow Risk on Vancouver Island, Canada, Using Stand Level Information’. For. Ecol. Manage. 154, 117–130

    Article  Google Scholar 

  • Moeng C.-H. (1984), ‘A Large-Eddy-Simulation Model for the Study of Planetary Boundary-Layer Turbulence’. J. Atmos. Sci. 41, 2052–2062

    Article  Google Scholar 

  • Morse A.P., Gardiner B.A., Marshall B.J. (2002), ‘Mechanisms Controlling Turbulence Development across a Forest Edge’. Boundary-Layer Meteorol. 103, 227–251

    Article  Google Scholar 

  • Mulhearn P.J. (1978), ‘A Wind-Tunnel Boundary-Layer Study of the Effects of a Surface Roughness Change: Rough to Smooth’. Boundary-Layer Meteorol. 15, 3–30

    Article  Google Scholar 

  • Nieveen J.P., El-Kilani R.M.M., Jacobs A.F.G. (2001), ‘Behaviour of the Static Pressure around a Tussock Grassland-Forest Interface’. Agric. For. Meteorol. 106, 253–259

    Article  Google Scholar 

  • Panofsky H.A., Townsend A.A. (1964), ‘Change of Terrain Roughness and the Wind Profiles’. Quart. J. Roy. Meteorol. Soc. 90, 147–155

    Article  Google Scholar 

  • Patton E.G., Shaw R.H., Judd M.J., Raupach M.R. (1998), ‘Large-Eddy Simulation of Windbreak Flow’. Boundary-Layer Meteorol. 87, 275–306

    Article  Google Scholar 

  • Paw U.K.T., Baldocchi D.D., Meyers T.P., Wilson K.B. (2000), ‘Correction of Eddy-Covariance Measurements Incorporating Both Advective Effects and Density Fluxes’. Boundary-Layer Meteorol. 97, 487–511

    Article  Google Scholar 

  • Rao K.S., Wyngaard J.C., Cote O.R. (1974), ‘The Structure of the Two-Dimensional Internal Boundary Layer over a Sudden Change of Surface Roughness’. J. Atmos. Sci. 31, 738–746

    Article  Google Scholar 

  • Raupach M.R., Coppin P.A., Legg B.J. (1986), ‘Experiments on Scalar Dispersion within a Model Plant Canopy, Part I: The Turbulence Structure’. Boundary-Layer Meteorol. 35, 21–52

    Article  Google Scholar 

  • Raupach M.R., Finnigan J.J. (1995), ‘Scale Issues in Boundary-Layer Meteorology: Surface Energy Balances in Heterogeneous Terrain’. Hydrol. Processes 9, 589–612

    Article  Google Scholar 

  • Raupach M.R., Finnigan J.J., Brunet Y. (1996), ‘Coherent Eddies and Turbulence in Vegetation Canopies: The Mixing-Layer Analogy’. Boundary-Layer Meteorol. 78, 351–382

    Article  Google Scholar 

  • Sadeh W.Z. (1975). ‘Simulation of Flow above Forest Canopies’. In: DeVies D.A., Afgan N.H. (eds). Heat and Mass Transfer in the Biosphere, Part I. J. Wiley & Sons, N.Y., pp. 251–263

    Google Scholar 

  • Shaw R.H., Den Hartog G., Neumann H.H. (1988), ‘Influence of Foliar Density and Thermal Stability on Profiles of Reynolds Stress and Turbulence Intensity in a Deciduous Forest’. Boundary-Layer Meteorol. 45, 391–409

    Article  Google Scholar 

  • Shaw R.H., Schumann U. (1992), ‘Large-Eddy Simulation of Turbulent Flow above and within a Forest’. Boundary-Layer Meteorol. 61, 47–64

    Article  Google Scholar 

  • Shir C.C. (1972), ‘A Numerical Computation of Air Flow over a Sudden Change in Surface Roughness’. J. Atmos. Sci. 29, 304–310

    Article  Google Scholar 

  • Stacey G.R., Belcher R.E., Wood C.J., Gardiner B.A. (1994), ‘Wind Flows and Forces in a Model Spruce Forest’. Boundary-Layer Meteorol. 69, 311–334

    Article  Google Scholar 

  • Su H.-B., Shaw R.H., Paw U.K.T. (2000), ‘Two-Point Correlation Analysis of Neutrally Stratified Flow with and above a Forest from Large-Eddy Simulation’. Boundary-Layer Meteorol. 94, 423–460

    Article  Google Scholar 

  • Su H.-B., Shaw R.H., Paw U.K.T., Moeng C.-H., Sullivan P.P. (1998), ‘Turbulent Statistics of Neutrally Stratified Flow within and above a Sparse Forest from Large-Eddy Simulation and Field Observations’. Boundary-Layer Meteorol. 88, 363–397

    Article  Google Scholar 

  • Sullivan P.P., McWilliams J.C., Moeng C.-H. (1994), ‘A Subgrid-Scale Model for Large-Eddy Simulation of Planetary Boundary-Layer Flows’. Boundary-layer Meteorol. 71, 247–276

    Article  Google Scholar 

  • Taylor P.A. (1969), ‘The Planetary Boundary Layer above a Change in Surface Roughness’. J. Atmos. Sci. 26, 432–440

    Article  Google Scholar 

  • Wilson J.D., Flesch T.K. (1999), ‘Wind and Remnant Tree Sway in Forest Cutblocks, III. A Windflow Model to Diagnose Spatial Variation’. Agric. For. Meteorol. 93, 259–282

    Article  Google Scholar 

  • Wright S.D., Elliott L., Ingham D.B., Hewson M.J.C. (1998), ‘The Adaptation of the Atmospheric Boundary Layer to a Change in Surface Roughness’. Boundary-Layer Meteorol. 89, 175–195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bai Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, B., Raupach, M.R., Shaw, R.H. et al. Large-eddy Simulation of Turbulent Flow Across a Forest Edge. Part I: Flow Statistics. Boundary-Layer Meteorol 120, 377–412 (2006). https://doi.org/10.1007/s10546-006-9057-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-006-9057-5

Keywords

Navigation