Skip to main content
Log in

The Effects of Inner- and Outer-Layer Turbulence in a Convective Boundary Layer on the Near-Neutral Inertial Sublayer Over an Urban-Like Surface

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A large-eddy simulation of the atmospheric boundary layer, large enough to contain both an urban surface layer and a convective mixed layer, was performed to investigate inner-layer and outer-layer scale motions. The objective was to determine the applicability of Monin–Obukhov similarity theory to inner-layer motions, to investigate the influence of outer-layer motions on surface-layer structure, as well as to assess the interaction of the two scales of motion. The urban surface roughness consisted of square-patterned cubic buildings of dimension H (40 m). A spatial filter was used to decompose the two scales in the inertial sublayer. The horizontal square filter of size 10H was effective in separating the inner-layer (surface-layer height ≈ 2 H) and outer-layer scales (boundary-layer height δ ≈ 30H), where the Reynolds stress contribution of the inner layer dominates in the logarithmic layer (depth 2H). Similarity coefficients for velocity fluctuations were successfully determined for inner-layer motions in the surface layer, proving the robustness of Monin–Obukhov similarity for surface-layer turbulence. The inner-layer structures exhibit streaky structures that have similar streamwise length but narrower spanwise width relative to the streamwise velocity fluctuation field, consistent with observations from an outdoor scale model. The outer-layer motions to some extent influence the location of ejections and sweeps through updraft and downdraft motions, respectively, thus, disturbing the homogeneity and similarity of inner-layer motions. Although the horizontal averages of the variances and covariance of motions reveal that the Reynolds stresses are dominated by inner-layer structures, the localized influence of the interaction of outer-layer horizontal and inner-layer vertical motions on the Reynolds stress is not insignificant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian RJ (2002) Information and the study of turbulence and complex flow. JSME J Ser B 45: 2–8

    Article  Google Scholar 

  • Adrian RJ, Meinhart CD, Tomkins CD (2000) Vortex organization in the outer region of the turbulent boundary layer. J Fluid Mech 422: 1–53

    Article  Google Scholar 

  • Antonia RA, Rajagopalan S (1990) Performance of lateral vorticity probe in a turbulent wake. Exp Fluids 9: 118–120

    Article  Google Scholar 

  • Antonia RA, Raupach MR (1993) Spectral scaling in a high Reynolds number laboratory boundary layer. Boundary-Layer Meteorol 65: 289–306

    Article  Google Scholar 

  • Bottema M (1997) Turbulence closure model “constants” and the problem of “inactive” atmospheric turbulence. J Wind Eng Ind Aerodyn 67–68: 897–908

    Article  Google Scholar 

  • Bou-Zeid E, Overney J, Rogers B, Parlange M (2009) The effects of building representation and clustering in large eddy simulations of flows in urban canopies. Boundary-Layer Meteorol 132: 415–436

    Article  Google Scholar 

  • Bradshaw P (1967) ‘Inactive’ motion and pressure fluctuations in turbulent boundary layers. J Fluid Mech 30: 241–258

    Article  Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux–profile relationships in the atmospheric surface layer. J Atmos Sci 28: 181–189

    Article  Google Scholar 

  • Castro IP, Cheng H, Reynolds R (2006) Turbulence over urban-type roughness: deductions from wind tunnel measurements. Boundary-Layer Meteorol 118: 109–131

    Article  Google Scholar 

  • Chakraborty P, Balachandar S, Adrian RJ (2005) On the relationships between local vortex identification schemes. J Fluid Mech 535: 189–214

    Article  Google Scholar 

  • Cheng H, Castro IP (2002) Near wall flow over urban-like roughness. Boundary-Layer Meteorol 104: 229–259

    Article  Google Scholar 

  • Coceal O, Dobre A, Thomas TG, Belcher SE (2007) Structure of turbulent flow over regular arrays of cubical roughness. J Fluid Mech 589: 375–409

    Article  Google Scholar 

  • Deardorff JW (1980) Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol 18: 495–527

    Article  Google Scholar 

  • Drobinski P, Carlotti P, Newsom RK, Banta RM, Foster RC, Redelsperger J-L (2004) The structure of the near-neutral atmospheric surface layer. J Atmos Sci 61: 699–714

    Article  Google Scholar 

  • Dyer AJ (1974) A review of flux–profile relationships. Boundary-Layer Meteorol 7: 363–372

    Article  Google Scholar 

  • Etling D, Brown RA (1993) Roll vortices in the planetary boundary layer: a review. Boundary-Layer Meteorol 65: 215–248

    Article  Google Scholar 

  • Feigenwinter C, Vogt R, Parlow E (1999) Vertical structure of selected turbulence characteristics above an urban canopy. Theor Appl Climatol 62: 51–63

    Article  Google Scholar 

  • Finnigan JJ (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32: 519–571

    Article  Google Scholar 

  • Finnigan JJ, Shaw RH (2000) A wind-tunnel study of airflow in waving wheat: an EOF analysis of the structure of the large-eddy motion. Boundary-Layer Meteorol 96: 211–255

    Article  Google Scholar 

  • Finnigan JJ, Shaw RH, Patton EG (2009) Turbulent structure above a vegetation canopy. J Fluid Mech 637: 387–424

    Article  Google Scholar 

  • Foster RC, Vianey F, Drobinski P, Carlotti P (2006) Near-surface coherent structures and the vertical momentum flux in a large-eddy simulation of the neutrally stratified boundary layer. Boundary-Layer Meteorol 120: 229–255

    Article  Google Scholar 

  • Hagishima A, Tanimoto J, Nagayama K, Meno S (2009) Aerodynamic parameters of regular arrays of rectangular blocks with various geometries. Boundary-Layer Meteorol 132: 315–337

    Article  Google Scholar 

  • Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42: 55–78

    Article  Google Scholar 

  • Högström U, Bergström H (1996) Organized turbulence structures in the near-neutral surface layer. J Atmos Sci 53: 2452–2464

    Article  Google Scholar 

  • Högström U, Hunt JCR, Smedman A-S (2002) Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Boundary-Layer Meteorol 103: 101–124

    Article  Google Scholar 

  • Hunt JCR, Carlotti P (2001) Statistical structure at the wall of the high Reynolds number turbulent boundary layer. Flow Turbul Combust 66: 453–475

    Article  Google Scholar 

  • Hunt JCR, Morrison JF (2000) Eddy structure in turbulent boundary layers. Eur J Mech B 19: 673–694

    Article  Google Scholar 

  • Inagaki A (2008) Atmospheric turbulence over an array of massive cubes. PhD dissertation, Tokyo Institute of Technology, Tokyo, 86 pp

  • Inagaki A, Kanda M (2008) Turbulent flow similarity over an array of cubes in near-neutrally stratified atmospheric flow. J Fluid Mech 615: 101–120

    Article  Google Scholar 

  • Inagaki A, Kanda M (2010) Organized structure of active turbulence over an array of cubes within the logarithmic layer of atmospheric flow. Boundary-Layer Meteorol 135: 209–228

    Article  Google Scholar 

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285: 69–94

    Article  Google Scholar 

  • Jiménez J (1999) The physics of wall turbulence. Physica A 263: 252–262

    Article  Google Scholar 

  • Jiménez J (2004) Turbulent flows over rough walls. Annu Rev Fluid Mech 36: 173–196

    Article  Google Scholar 

  • Kaimal JC (1978) Horizontal velocity spectra in an unstable surface layer. J Atmos Sci 35: 18–24

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, p 289

    Google Scholar 

  • Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface layer turbulence. Q J Roy Meteorol Soc 98: 563–589

    Article  Google Scholar 

  • Kanda M (2007) Progress in urban meteorology: a review. J Meteorol Soc Jpn 85: 363–383

    Article  Google Scholar 

  • Kanda M, Moriwaki R, Kasamatsu F (2004) Large eddy simulation of turbulent organized structure within and above explicitly resolved cube arrays. Boundary-Layer Meteorol 112: 343–368

    Article  Google Scholar 

  • Kim KC, Adrian RJ (1999) Very large-scale motion in the outer layer. Phys Fluid 11: 417–422

    Article  Google Scholar 

  • Kolář V (2007) Vortex identification: new requirements and limitations. Int J Heat Fluid Flow 28: 638–652

    Article  Google Scholar 

  • Kono T, Tamura T, Ashie Y (2010) Numerical investigations of mean winds within canopies of regularly arrayed cubical buildings under neutral stability conditions. Boundary-Layer Meteorol 134: 131–155

    Article  Google Scholar 

  • Laubach J, McNaughton KG (2009) Scaling properties of temperature spectra and heat-flux cospectra in the surface friction layer beneath an unstable outer layer. Boundary-Layer Meteorol 133: 219–252

    Article  Google Scholar 

  • Letzel MO (2007) High resolution LES of turbulent flow around buildings. PhD dissertation, University of Hannover, Hannover, 126 pp

  • Letzel MO, Krane M, Raasch S (2008) High resolution urban large-eddy simulation studies from street canyon to neighborhood scale. Atmos Environ 42: 8770–8784

    Article  Google Scholar 

  • Mahrt L, Gibson W (1992) Flux decomposition into coherent structures. Boundary-Layer Meteorol 60: 143–168

    Article  Google Scholar 

  • Maitani T, Shaw RH (1990) Joint probability analysis of momentum and heat fluxes at a deciduous forest. Boundary-Layer Meteorol 52: 283–300

    Article  Google Scholar 

  • McNaughton KG (2004) Turbulence structure of the unstable atmospheric surface layer and transition to the outer layer. Boundary-Layer Meteorol 112: 199–221

    Article  Google Scholar 

  • McNaughton KG (2006) On the kinetic energy budget of the unstable atmospheric surface layer. Boundary-Layer Meteorol 118: 83–107

    Article  Google Scholar 

  • McNaughton KG, Brunet Y (2002) Townsend’s hypothesis, coherent structures and Monin–Obukhov similarity. Boundary-Layer Meteorol 102: 161–175

    Article  Google Scholar 

  • McNaughton KG, Laubach J (1998) Unsteadiness as a cause of non-equality of eddy diffusivities for heat and vapour at the base of an advective inversion. Boundary-Layer Meteorol 88: 479–504

    Article  Google Scholar 

  • McNaughton KG, Laubach J (2000) Power spectra and cospectra for wind and scalars in a disturbed surface layer at the base of an advective inversion. Boundary-Layer Meteorol 96: 143–185

    Article  Google Scholar 

  • Moeng C-H, Sullivan PP (1994) A comparison of shear- and buoyancy-driven planetary boundary layer flows. J Atmos Sci 51: 999–1022

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr Akad Nauk SSSR Geofiz Inst 24: 163–187 (English translation by Miller J, 1959)

    Google Scholar 

  • Morrison JF (2007) The interaction between inner and outer regions of turbulent wall-bounded flow. Philos Trans R Soc A 365: 683–698

    Article  Google Scholar 

  • Morrison JF, Jiang W, McKeon BJ, Smits AJ (2002) Reynolds number dependence of streamwise velocity spectra in turbulent pipe flow. Phys Rev Lett 88: 214501

    Article  Google Scholar 

  • Poggi D, Katul G (2008) Turbulent intensities and velocity spectra for bare and forested gentle hills: flume experiments. Boundary-Layer Meteorol 129: 25–46

    Article  Google Scholar 

  • Raasch S, Schröter S (2001) A large-eddy simulation model performing on massively parallel computers. Meteorol Z 10: 363–372

    Article  Google Scholar 

  • Raupach MR (1981) Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J Fluid Mech 108: 363–382

    Article  Google Scholar 

  • Raupach MR, Antonia RA, Rajagopalan S (1991) Rough-wall turbulent boundary layers. Appl Mech Rev 44: 1–25

    Article  Google Scholar 

  • Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 78: 351–382

    Article  Google Scholar 

  • Richardson LF (1920) The supply of energy from and to atmospheric eddies. Proc R Soc Lond A 97: 354–373

    Article  Google Scholar 

  • Robinson SK (1991) Coherent motions in the turbulent boundary layer. Annu Rev Fluid Mech 23: 601–639

    Article  Google Scholar 

  • Rotach MW (1993) Turbulence close to a rough urban surface part II: variances and gradients. Boundary-Layer Meteorol 66: 75–92

    Article  Google Scholar 

  • Rotach MW, Vogt R, Bernhofer C, Batchvarova E, Christen A, Clappier A, Feddersen B, Gryning S-E, Martucci G, Mayer H, Mitev V, Oke TR, Parlow E, Richner H, Roth M, Roulet Y-A, Ruffieux D, Salmond JA, Schatzmann M, Vogt JA (2005) BUBBLE—an urban boundary layer meteorology project. Theor Appl Climatol 81: 231–261

    Article  Google Scholar 

  • Roth M (2000) Review of atmospheric turbulence over cities. Q J Roy Meteorol Soc 126: 941–990

    Article  Google Scholar 

  • Shaw RH, Tavanger J, Ward DP (1983) Structure of the Reynolds stress in a canopy layer. J Clim Appl Meteorol 22: 1922–1931

    Article  Google Scholar 

  • Shaw RH, Brunet Y, Finnigan JJ, Raupach MR (1995) A wind tunnel study of air flow in waving wheat: two-point velocity statistics. Boundary-Layer Meteorol 76: 349–376

    Article  Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, The Netherlands, p 680

    Google Scholar 

  • Su H-B, Shaw RH, Paw U KT, Moeng C-H, Sullivan PP (1998) Turbulent statistics of neutrally stratified flow within and above a sparse forest from large-eddy simulation and field observations. Boundary-Layer Meteorol 88: 363–397

    Article  Google Scholar 

  • Townsend AA (1961) Equilibrium layers and wall turbulence. J Fluid Mech 11: 97–120

    Article  Google Scholar 

  • Townsend AA (1976) The structure of turbulent shear flow. Cambridge University Press, UK, p 315

    Google Scholar 

  • Van Gorsel E, Christen A, Feigenwinter C, Parlow E, Vogt R (2003) Daytime turbulence statistics above a steep forested slope. Boundary-Layer Meteorol 109: 311–329

    Article  Google Scholar 

  • Wallace JM, Eckelmann H, Brodkey RS (1972) The wall region in turbulent shear flow. J Fluid Mech 54: 39–48

    Article  Google Scholar 

  • Willmarth WW, Lu SS (1972) Structure of the Reynolds stress near the wall. J Fluid Mech 55: 65–92

    Article  Google Scholar 

  • Wyngaard JC, Coté OR (1971) The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J Atmos Sci 28: 190–201

    Article  Google Scholar 

  • Xie Z-T, Coceal O, Castro IP (2008) Large-eddy simulation of flows over random urban-like obstacles. Boundary-Layer Meteorol 129: 1–23

    Article  Google Scholar 

  • Zhao R, Smits AJ (2007) Wall-normal turbulence statistics in high Reynolds number flow. J Fluid Mech 576: 457–473

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marieta Cristina Castillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castillo, M.C., Inagaki, A. & Kanda, M. The Effects of Inner- and Outer-Layer Turbulence in a Convective Boundary Layer on the Near-Neutral Inertial Sublayer Over an Urban-Like Surface. Boundary-Layer Meteorol 140, 453–469 (2011). https://doi.org/10.1007/s10546-011-9614-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-011-9614-4

Keywords

Navigation