Skip to main content
Log in

Flux decomposition into coherent structures

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

This study examines the intermittency of the momentum flux near the surface and the relation of such intermittency to coherent structures. Toward this goal, variances and covariances are decomposed into coherent structures and less coherent activity. The sampled structures are identified using the Haar transform and then decomposed into eigenvectors of the lagged covariance matrix.

The methodology is applied to the momentum flux for a relatively stationary 50-h period of strong winds measured from a 45 m tower in the Lammefjord Experiment. Events of sinking motion with strong horizontal momentum account for the majority of the flux. Such sweeping motions arrive as gust microfronts. The large momentum flux is associated with strong coherent fluctuations of the longitudinal wind component and high correlation with relatively modest fluctuations of vertical motion. In the heated case (HAPEX), a phase lag between the vertical and horizontal velocity fluctuations leads to less efficient momentum transport by the main coherent structures.

The event nature of the flux is used to formulate an expression for the flux error due to sampling problems. Estimation of the momentum flux requires a significantly longer record than for the heat flux. Modulation of the flux by mesoscale variations also affects the sampling strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • André, J.-C. et al.: 1988: ‘HAPEX-MOBIHLY. First Results from the Special Observing Period’, Ann. Geophys. B, 6, 477–492.

    Google Scholar 

  • Antonia, R. A. and Chambers, A. J.: 1978: ‘Note on the Temperature Ramp Structure in the Marine Surface Layer’, Boundary-Layer Meteorol. 5, 347–355.

    Google Scholar 

  • Argoul, F., Arneodo, A., Grasseau, G., Gagne, Y., Hopfinger, E. J., and Frisch, U.: 1989: ‘Wavelet Analysis of Turbulence Reveals the Multifractal Nature of the Richardson Cascade’, Nature 338, 51–53.

    Google Scholar 

  • Bacry, E., Arneodo, A., Frisch, U., Gagne, Y., and Hopfinger, E.: 1989: ‘Wavelet Analysis of Fully Developed Turbulence Data and Measurement of Scaling Exponents’, in M. Lesieur and O. Metais, (eds.), Turbulence and Coherent Structures, Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Bergström, H. and Högström, U.: 1989, ‘Turbulent Exchange above a Pine Forest II. Organized Structures’, Boundary-Layer Meteorol. 49, 231–163.

    Google Scholar 

  • Billingsley, P.: 1986, Probability and Measure, Wiley, New York, 622 pp.

    Google Scholar 

  • Bradshaw, P.: 1967, ‘“Inactive” Motion and Pressure Fluctuations in Turbulent Boundary Layers’, J. Fluid Mech. 30, 241–258.

    Google Scholar 

  • Chen, C. H. P. and Blackwelder, R. F.: 1978: ‘Large-Scale Motion in Turbulent Boundary Layer: A Study Using Temperature Contamination’, J. Fluid Mech. 89, 1–31.

    Google Scholar 

  • Daubechies, Ingrid: 1988, ‘Orthonormal Bases of Compactly Supported Wavelets’, Comm. Pure and Appl. Math. 61, 909–996.

    Google Scholar 

  • Finnigan, J. J.: 1979: ‘Turbulence in Waving Wheat II. Structure of Momentum Transfer’, Boundary-Layer Meteorol. 16, 213–236.

    Google Scholar 

  • Haugen, D. A., Kaimal, J. C., and Bradley, E. F.: 1971: ‘An Experimental Study of Reynolds Stress and Heat Flux in the Atmospheric Surface Layer’, Quart. J. Roy. Meteorol. Soc. 97, 168–180.

    Google Scholar 

  • Högström, Ulf: 1990, ‘Analysis of Turbulence Structure in the Surface Layer with a Modified Similarity Formulation for Near Neutral Conditions’, J. Atmos. Sci. 47, 1949–1972.

    Google Scholar 

  • Hussain, A. K. M. F.: 1986, ‘Coherent Structures and Turbulence’, J. Fluid Mech. 173, 303–356.

    Google Scholar 

  • Kikuchi, T. and Chiba, O.: 1985: ‘Step Like Temperature Fluctuations Associated with Inverted Ramps in a Stable Surface Layer’, Boundary-Layer Meteorol. 31, 51–63.

    Google Scholar 

  • Kristensen, L., Lenschow, D. H., Kirkegaard, P., and Courtney, M.: 1989, ‘The Spectral Velocity Tensor for Homogeneous Boundary-Layer Turbulence’, Boundary-Layer Meteorol. 47, 149–193.

    Google Scholar 

  • Kharkevich, A. A.: 1960, ‘Spectra and Analyses’, Consultants Bureau, 222 pp.

  • LeMone, M. A.: 1973, ‘The Structure and Dynamics of Horizontal Roll Vortices in the Planetary Boundary Layer’, J. Atmos. Sci. 30, 1077–1091.

    Google Scholar 

  • Lenschow, D. H.: 1970, ‘Length Scales in the Convective Boundary Layer’, J. Atmos. Sci. 43, 1198–1209.

    Google Scholar 

  • Lenschow, D. H. and Stankov, B. B.: 1986, ‘Length Scales in the Convective Boundary Layer’, J. Appl. Meteorol. 9, 874–884.

    Google Scholar 

  • Lumley, J. L.: 1970, Stochastic Tools in Turbulence, Academic Press, New York, 194 pp.

    Google Scholar 

  • Mahrt, L.: 1991a, ‘Eddy Asymmetry in the Sheared Heated Boundary Layer’, J. Atmos. Sci. 48, 472–492.

    Google Scholar 

  • Mahrt, L.: 1991b, ‘Eigen-Structure of Eddies; Continuous Weighting versus Conditional Sampling’, in D. Schertzer and S. Lovejoy (eds.), Non-Linear Variability in Geophysics, pp. 145–156. Kluwer Publishers, Dordrecht.

    Google Scholar 

  • Mahrt, L. and Frank, H.: 1988, ‘Eigen Structure of Eddy Microfronts’, Tellus 40A, 107–119.

    Google Scholar 

  • Mallat, S. G.: 1989, ‘Multifrequency Channel Decompositions of Images and Wavelet Models’, IEEE Trans. Acoustics, Speech, Signal Proc. 17, 2091–2110.

    Google Scholar 

  • McBean, G. A. and Elliot, J. A.: 1978, ‘The Energy Budgets of the Turbulent Velocity Components and the Velocity-Pressure Gradient Interactions’, J. Atmos. Sci. 28, 190–201.

    Google Scholar 

  • Maitani, T. and Ohtaki, E.: 1987: ‘Turbulent Transport Processes of Momentum and Sensible Heat in the Surface Layer over a Paddy Field’, Boundary-Layer Meteorol. 40, 283–294.

    Google Scholar 

  • Maitani, T. and Seo, T.: 1985, ‘Estimates of Velocity-Pressure and Velocity-Pressure Gradient Interactions in the Surface Layer over Plant Canopies’, Boundary-Layer Meteorol. 33, 51–60.

    Google Scholar 

  • Nappo, C. J.: 1991, ‘Sporadic Breakdowns of Stability in the PBL over Simple and Complex Terrain’, Boundary-Layer Meteorol. 54, 69–88.

    Google Scholar 

  • Oerlemans, J.: 1978, ‘An Objective Approach to Breaks in the Weather’, Mon. Wea. Rev. 106, 1672–1679.

    Google Scholar 

  • Panofsky, Hans A. and Dutton, John A.: 1984, Atmospheric Turbulence, John Wiley and Sons, New York, 397 pp.

    Google Scholar 

  • Petersen, E. L.: 1976, ‘A Model for the Simulation of Atmospheric Turbulence’, J. Appl. Meteorol. 15, 571–578.

    Google Scholar 

  • Raupach, M. R.: 1981: ‘Conditional Statistics of Reynolds Stress in Rough-Wall and Smooth-Wall Turbulent Boundary Layers’, J. Fluid Mech. 108, 363–382.

    Google Scholar 

  • Schols, J. L. J.: 1984, ‘The Detection and Measurement of Turbulent Structures in the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 29, 39–58.

    Google Scholar 

  • Shaw, W. J. and Businger, J. A.: 1985, ‘Intermittency and the Organization of Turbulence in the Near-Neutral Marine Atmospheric Boundary Layer’, J. Atmos. Sci. 42, 2563–2584.

    Google Scholar 

  • Shaw, R. H., Paw U, K. T. and Gao, W.: 1989, ‘Detection of Temperature Ramps and Flow Structures at a Deciduous Forest Site’, Agric. Forest. Meteorol. 47, 123–138.

    Google Scholar 

  • Shaw, R. H., Paw U, K. T., Zhang, X. J., Gao, W., Den Hartog, G., and Neumann, H. H.: 1990, ‘Retrieval of Turbulent Pressure Fluctuations at the Ground Surface Beneath a Forest’, Boundary-Layer Meteorol. 50, 319–338.

    Google Scholar 

  • Sirovich, L.: 1987, ‘Turbulence and the Dynamics of Coherent Structures. Part 1: Coherent Structures’, Quart. of Appl. Math. 45, 561–571.

    Google Scholar 

  • Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers. Boston. 666 pp.

    Google Scholar 

  • Taubenheim, J.: 1989, ‘An Easy Procedure for Detecting a Discontinuity in a Digital Time Series’, Zeitschrift Meteorol. 39, 344–347.

    Google Scholar 

  • Tennekes, H.: 1976, ‘Fourier-Transform Ambiguity in Turbulence Dynamics’, J. Atmos. Sci. 33, 1660–1663.

    Google Scholar 

  • Townsend, A. A.: 1976, The Structure of Turbulent Shear Flow, Cambridge University Press, Cambridge, 429 pp.

    Google Scholar 

  • Wilczak, J. M.: 1984, ‘Large-Scale Eddies in the Unstably Stratified Atmospheric Surface Layer. Part 1: Velocity and Temperature Structure’, J. Atmos. Sci. 24, 3537–3550.

    Google Scholar 

  • Wyngaard, J. C. and Coté, O. R.: 1971, ‘The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 190–201.

    Google Scholar 

  • Zhong, S, and Mallat, S.: 1990, ‘Compact Image Representation from Multiscale Edges’, Third International Conference on Computer Vision, Japan.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahrt, L., Gibson, W. Flux decomposition into coherent structures. Boundary-Layer Meteorol 60, 143–168 (1992). https://doi.org/10.1007/BF00122065

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00122065

Keywords

Navigation