Skip to main content
Log in

Near-Surface Coherent Structures and The Vertical Momentum Flux in a Large-Eddy Simulation of the Neutrally-Stratified Boundary Layer

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The near-surface flow of a well-resolved large-eddy simulation of the neutrally-stratified planetary boundary layer is used to explore the relationships between coherent structures and the vertical momentum flux. The near-surface flow is characterized by transient streaks, which are alternating bands of relatively higher and lower speed flow that form parallel to the mean shear direction in the lower part of the boundary layer. Although individual streaks are transient, the overall flow is in a quasi-equilibrium state in which the streaks form, grow, decay and regenerate over lifetimes on the order of tens of minutes. Coupled with the streaky flow is an overturning circulation with alternating bands of updrafts and downdrafts approximately centered on the streaks. The surface stress is dominated by upward ejections of slower moving near-surface air and downward sweeps of higher speed air from higher in the boundary layer. Conditional sampling of the ejection and sweep events shows that they are compact, coherent structures and are intimately related to the streaks: ejections (sweeps) preferentially form in the updrafts (downdrafts) of the three-dimensional streak flow. Hence, consistent with other recent studies, we propose that the streak motion plays an important role in the maintenance of the surface stress by establishing the preferential conditions for the ejections and sweeps that dominate the surface stress. The velocity fluctuation spectra in the model near the surface have a k −1 spectral slope over an intermediate range of wavenumbers. This behaviour is consistent with recent theoretical predictions that attempt to evaluate the effects of organized flow, such as near-surface streaks, on the variance spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian R.J., Meinhart C.D., and Tomkins C.D. (2000). ‘Vortex Organisation in the Outer Region of the Turbulent Boundary Layer’. J. Fluid Mech. 422:1–54

    Article  Google Scholar 

  • Antonia R.A., Rajagopalan S., and Chambers A.J. (1983). ‘Conditional Sampling of Turbulence in the Atmospheric Surface Layer’. J. Climate Appl. Meteorol. 22:69–78

    Article  Google Scholar 

  • Benaïssa A., Liandrat J., and Anselmet F. (1995). ’Spectral Contribution of Coherent Motions in a Turbulent Boundary Layer’. Eur. J. Mech. B/Fluids 14:697–718

    Google Scholar 

  • Boppe R.S. and Neu W.L. (1995). ‘Quasi-Coherent Structures in the Marine Atmospheric Surface Layer’. J. Geophys. Res. 100:20635–20648

    Article  Google Scholar 

  • Boppe R.S., Neu W.L., and Shuai H. (1999). ‘Large-Scale Motions in the Marine Atmospheric Surface Layer’. Boundary-Layer Meteorol. 92:165–183

    Article  Google Scholar 

  • Carlotti P. (2002). ‘Two Point Properties of Atmospheric Turbulence Very Close to the Ground: Comparison of a High resolution LES with Theoretical Models’. Boundary-Layer Meteorol. 104:381–410

    Article  Google Scholar 

  • Carlotti P. and Drobinski P. (2004). ‘Length-Scales in Wall-Bounded High Reynolds Number Turbulence’. J. Fluid Mech. 516:239–264

    Article  Google Scholar 

  • Cava D., Schipa S. and Giostra U. (2005). ‘Investigation of Low Frequency Perturbations Induced by a Steep Obstacle’. Boundary-Layer Meteorol. 115:27–45

    Article  Google Scholar 

  • Chambers A.J. and Antonia R.A. (1981). ‘Wave-Induced Effect on the Reynolds Shear Stress and Heat Flux in the Marine Surface Layer’. J. Phys. Oceanogr. 11:116–121

    Article  Google Scholar 

  • Cuxart J., Bougeault P., and Redelsperger J.L. (2000). ‘A Multiscale Turbulence Scheme Apt for LES and Mesoscale Modelling’. Quart. J. Roy. Meteorol. Soc. 126:1–30

    Article  Google Scholar 

  • Deardorff J. W. (1972). ‘Numerical Investigation of Neutral and Unstable Planetary Boundary Layers’. J. Atmos. Sci. 29: 91–115

    Article  Google Scholar 

  • Drobinski P. and Foster R.C. (2003). ‘On the Origin of Near-Surface Streaks in the Neutrally-Stratified Planetary Boundary Layer’. Boundary-Layer Meteorol. 108:247–256

    Article  Google Scholar 

  • Drobinski P., Brown R.A., Flamant P.H., and Pelon J. (1998). ‘Evidence of Organized Large Eddies by Ground-Based Doppler Lidar, Sonic Anemometer and Sodar’. Boundary-Layer Meteorol. 88:343–361

    Article  Google Scholar 

  • Drobinski P., Carlotti P., Newsom R.K., Banta R.M., Foster R.C., and Redelsperger J.L. (2004). ‘The Structure of the Near-Neutral Surface Layer’. J. Atmos. Sci. 61:699–714

    Article  Google Scholar 

  • Etling D. and Brown R.A. (1993). ‘Roll Vortices in the Planetary Boundary Layer: A Review’. Boundary-Layer Meteorol. 21:215–248

    Article  Google Scholar 

  • Farge M. (1992). ‘Wavelet Transforms and their Applications to Turbulence’. Ann. Rev. Fluid Mech. 24:395–457

    Article  Google Scholar 

  • Foster, R. C. and Drobinski, P.: 2000, ‘Near-Surface Streaks: Comparison of LES with Theory’, Proceedings 14th Symp. on Boundary Layer and Turbulence, Aspen, CO, USA, A.M.S., pp. 499–502.

  • Foster R.C. (1997). ‘Structure and Energetics of Optimal Ekman Layer Perturbations’. J. Fluid Mech. 333:97–123

    Article  Google Scholar 

  • Ganapathisubramani B., Longmire E.K., and Marusic I. (2003). ‘Characteristics of Vortex Packets in Turbulent Boundary Layers’. J. Fluid Mech. 478:35–46

    Article  Google Scholar 

  • Ganapathisubramani B., Hutchins N., Hambleton W.T., Longmire E.K., and Marusic I. (2005). ‘Investigation of Large-Scale Coherence in a Turbulent Boundary Layer using Two-Point Correlations’. J. Fluid Mech. 524:57–80

    Article  Google Scholar 

  • Giostra U., Cava D., and Schipa S. (2002). ‘Structure Functions in a Wall-Turbulent Shear Flow’. Boundary-Layer Meterol. 103:337–359

    Article  Google Scholar 

  • Högström U., Hunt J.C.R., and Smedman A.S. (2002). ‘Theory and Measurements for Turbulence Spectra and Variances in the Atmospheric Neutral Surface Layer’. Boundary-Layer Meteorol. 103:101–124

    Article  Google Scholar 

  • Högström U. (1990). ‘Analysis of Turbulence Structure in the Surface Layer with a Modified Similarity Theory Formulations for Neutral Conditions’. J. Atmos. Sci. 47:1949–1972

    Article  Google Scholar 

  • Hommema S.E. and Adrian R.J. (2003). ‘Packet Structure of Surface Eddies in the Atmospheric Boundary Layer’. Boundary-Layer Meteorol. 106:35–60

    Article  Google Scholar 

  • Hunt J.C.R. and Morrison J.F. (2000). ‘Eddy Structure in Turbulent Boundary Layers’. Eur. J. Mech. B – Fluids 19:673–694

    Google Scholar 

  • Hunt J.C.R. and Carlotti P. (2001). ‘Statistical Structure at the Wall of the High Reynolds Number Turbulent Boundary Layer’. Flow, Turbulence, Combustion 66:453–475

    Article  Google Scholar 

  • Kader, B. A. and Yaglom, A. M.: 1989, ‘Spectra and Correlation Functions of Surface Layer Atmospheric Turbulence in Unstable Thermal Stratification’, in O. Métais and M. Lesieur (eds.), Turbulence 89: Organized Structures and Turbulence in Fluid Mechanics, 1989 grenoble, France.

  • Katul G., Chu C.R., Parlange M.B., Albertson J.D., and Ortenburger T.A. (1995). ‘The Low Wave Number Spectral Characteristics of Turbulent Velocity and Temperature in the Unstable Atmospheric Surface Layer’. J. Geophys. Res. 100:14243–14255

    Article  Google Scholar 

  • Katul, G., Hsieh, C. I., Kuhn, G., Ellsworth, D., and Nie, D.: 1997, ‘Turbulent Eddy Motion at the Forest-Atmosphere Interface’, J. Geophys. Res. 102(D12), 13,409–13,421

    Google Scholar 

  • Khanna S. and Brasseur J.G. (1998). ‘Three-Dimensional Buoyancy- and Shear-Induced Local Structure of the Atmospheric Boundary Layer’. J. Atmos. Sci. 55:710–743

    Article  Google Scholar 

  • Kim K.C. and Adrian R.J. (1999). ‘Very Large-Scale Motion in the Outer Layer’. Phys. Fluids 11:417–422

    Article  Google Scholar 

  • Lafore J.P., Stein J., Asencio N., Bougeault P., Ducrocq V., Duron J., Fischer C., Héreil P., Mascart P., Masson V., Pinty J.P., Redelsperger J.L., Richard E., and Vilà- Guerau de Arellano J. (1998). ‘The Meso-Nh atmospheric simulation system Part I: adiabatic formulation and control simulation’. Ann. Geophys. 16:90–109

    Article  Google Scholar 

  • Lin C.L., McWilliams J.C., Moeng C.H., and Sullivan P.P. (1996). ‘Coherent Structures in a Neutrally-Stratified Planetary Boundary Layer’. Phys. Fluids 8:2626–2639

    Article  Google Scholar 

  • Lin C.L., Sullivan P.P., Moeng C.H., and McWilliams J.C. (1997). ‘The Effect of Surface Roughness on Flow Structures in a Neutrally-Stratified Planetary Boundary Layer’. Phys. Fluids 9:3235–3249

    Article  Google Scholar 

  • Mahrt L. and Gibson W. (1992). ‘Flux Decomposition into Coherent Structures’. Boundary-Layer Meteorol. 60:143–168

    Article  Google Scholar 

  • Moeng C.H. and Sullivan P.P. (1994). ‘A Comparison of Shear- and Buoyancy-Driven Planetary Boundary Layer Flows’. J. Atmos. Sci. 51:999–1022

    Article  Google Scholar 

  • Mourad P.D. (1996). ‘Inferring the Multiscale Structure of Atmospheric Turbulence using Satellite-Based SAR Imagery’. J. Geophys. Res. 101:18433–18499

    Article  Google Scholar 

  • Porté-Agel F., Meneveau C., and Parlange M.B. (2000). ‘A Scale-Dependent Dynamic Model for Large-Eddy Simulation: Application to a Neutral Atmospheric Boundary Layer’. J. Fluid Mech. 415:216–284

    Article  Google Scholar 

  • Savtchenko A. (1999). ‘Effect of Large Eddies on Atmospheric Surface Layer Turbulence and the Underlying Wave Field’. J. Geophys. Res. 104:3149–3157

    Article  Google Scholar 

  • Toh S. and Itano T. (2005). ‘Interaction Between a Large-Scale Structure and Near-Wall Structures in Channel Flow’. J. Fluid. Mech. 524:249–262

    Article  Google Scholar 

  • Townsend A.A. (1976). The Structure of Turbulent Shear Flows, 2nd edn. Cambridge University Press, Cambridge, 429 pp.

    Google Scholar 

  • Weckwerth, T. M., Grund, C. J., and Mayor, S. D.: 1997, ‘Linearly-Organized Coherent Structures in the Surface Layer’, Proceedings 12th Symp. on Boundary Layer and Turbulence, Vancouver, B.C., Canada, A.M.S., pp. 22–23.

  • Wilczak J.M. and Tillman J.E. (1980). ‘The Three-Dimensional Structure of Convection in the Atmospheric Surface Layer’. J. Atmos. Sci. 37:2424–2443

    Article  Google Scholar 

  • Wilson D.K. (1996). ‘Empirical Orthogonal Function Analysis of the Weakly Convective Atmospheric Boundary Layer Part I: Eddy Structures’. J. Atmos. Sci. 53:801–823

    Article  Google Scholar 

  • Young G.S., Kristovich D.S., Hjelmfelt M.R. and Foster R.C. (2002). ‘Rolls, Streets, Waves and More: A Review of Quasi-Two Dimensional Structures in the Atmospheric Boundary Layer’. Bull. Amer. Meteorol. Soc. 83:997–1001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Drobinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, R.C., Vianey, F., Drobinski, P. et al. Near-Surface Coherent Structures and The Vertical Momentum Flux in a Large-Eddy Simulation of the Neutrally-Stratified Boundary Layer. Boundary-Layer Meteorol 120, 229–255 (2006). https://doi.org/10.1007/s10546-006-9054-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-006-9054-8

Keywords

Navigation