Skip to main content
Log in

A Simple Method of Estimating Scalar Fluxes Over Forests

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A simple aerodynamic-variance method is proposed to fill gaps in continuous CO2 flux measurements in rainy conditions, when open-path analysers do not function. The method requires turbulent conditions (friction velocity greater than 0.1 ms–1), and uses measurements of mean wind speed, and standard deviations of temperature and CO2 concentration fluctuations to complement, and at times replace, eddy-covariance measurements of friction velocity, sensible heat flux and CO2 flux. Friction velocity is estimated from the mean wind speed with a flux-gradient relationship modified for the roughness sublayer. Since normalised standard deviations do not follow Monin-Obukhov similarity theory in the roughness sublayer, a simple classification scheme according to the scalar turbulence scale was used. This scheme is shown to produce sensible heat and CO2 flux estimates that are well correlated with the measured values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asanuma J, Ishikawa H, Tamagawa I, Ma Y, Hayashi T, Qi Y, Wang J (2005) Application of the band-pass covariance technique to portable flux measurements over the Tibetan Plateau. Water Resour Res 41: W09407

    Article  Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Chang Biol 9: 479–492

    Article  Google Scholar 

  • Brutsaert W (1992) Stability correction functions for the mean wind speed and temperature in the unstable surface layer. Geophys Res Lett 19(5): 469–472

    Article  Google Scholar 

  • Cellier P, Brunet Y (1992) Flux-gradient relationships above tall plant canopies. Agric For Meteorol 58: 93–117

    Article  Google Scholar 

  • Chen JM, Govind A, Sonnentag O, Zhang Y, Barr A, Amiro B (2006) Leaf area index measurements at fluxnet canada forest sites. Agric For Meteorol 140: 257–268

    Article  Google Scholar 

  • Chen B, Black TA, Coops NC, Hilker T, Trofymow JA, Morgenstern K (2008) Assessing tower flux footprint climatology and scaling between remotely sensed and eddy covariance measurements. Boundary-Layer Meteorol 130: 137–167

    Article  Google Scholar 

  • de Souza EB, da Rocha EJP (2006) On the diurnal variability of rainfall in eastern amazonia along atlantic coast during rainy season. In: Proceedings of 8th ICSHMO, Foz do Iguac̨u, 24–28 April 2006, pp 1203–1207

  • Dias NL, Brutsaert W (1996) Similarity of scalars under stable conditions. Boundary-Layer Meteorol 80: 355–373

    Article  Google Scholar 

  • Dias NL, Duarte HF, Maggiotto SR, Grodzki L (2007) An attenuated eddy covariance method for latent heat flux measurements. Water Resour Res 43: W04415

    Article  Google Scholar 

  • Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen N-O, Katul G, Keronen P, Kowalski A, Lai CT, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S (2001) Gap filling strategies for long term energy flux data sets. Agric For Meteorol 107: 71–77

    Article  Google Scholar 

  • Garratt JR (1980) Surface influence upon vertical profiles in the atmospheric near-surface layer. Q J Roy Meteorol Soc 106: 803–819

    Article  Google Scholar 

  • Garratt JR (1983) Surface influence upon vertical profiles in the nocturnal boundary layer. Boundary-Layer Meteorol 26: 69–80

    Article  Google Scholar 

  • Garratt J (1994) The atmospheric boundary layer. Cambridge University Press, UK, p 316

    Google Scholar 

  • Harman IN, Finnigan JJ (2007) A simple unified theory for flow in the canopy and roughness sublayer. Boundary-Layer Meteorol 123: 339–363

    Article  Google Scholar 

  • Hill RJ (1989) Implications of Monin-Obukhov similarity theory for scalar quantities. J Atmos Sci 46: 2236–2244

    Article  Google Scholar 

  • Horst TW (1997) A simple formula for attenuation of eddy fluxes measured with first-order response scalar sensors. Boundary-Layer Meteorol 82: 219–233

    Article  Google Scholar 

  • Humphreys ER, Black TA, Morgenstern K, Li Z, Nesic Z (2005) Net ecosystem production of a douglas-fir stand for 3 years following clearcut harvesting. Glob Chang Biol 11: 450–464

    Article  Google Scholar 

  • Humphreys ER, Black TA, Morgenstern K, Cai T, Drewitt GB, Nesic Z, Trofymowb JA (2006) Carbon dioxide fluxes in coastal douglas-fir stands at different stages of development after clearcut harvesting. Agric For Meteorol 140: 6–22

    Article  Google Scholar 

  • Kaimal J, Finnigan J (1994) Boundary-Layer flows. Oxford University Press, UK, p 289

    Google Scholar 

  • Katul G, Goltz SM, Hsieh C-I, Cheng Y, Mowry F, Sigmon J (1995) Estimation of surface heat and momentum fluxes using the flux-variance method above uniform and non-uniform terrain. Boundary-Layer Meteorol 74: 237–260

    Article  Google Scholar 

  • Katul G, Hsieh C-I, Bowling D, Clark K, Shurpali N, Turnipse A, Albertson J, Tu K, Hollinger D, Evans B, Offerle B, Anderson D, Ellsworth D, Vogel C, Oren R (1999) Spatial variability of turbulent fluxes in the roughness sublayer of an even-aged pine forest. Boundary-Layer Meteorol 93: 1–28

    Article  Google Scholar 

  • Lee X, Wu H, Sigler J, Oishi C, Siccama T (2004) Rapid and transient response of soil respiration to rain. Glob Chang Biol 10(6): 1017–1026

    Article  Google Scholar 

  • Mölder M, Grelle A, Lindroth A, Halldin S (1999) Flux-profile relationships over a boreal forest—roughness sublayer corrections. Agric For Meteorol 98(99): 645–658

    Article  Google Scholar 

  • Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol 37: 17–35

    Article  Google Scholar 

  • Morgenstern K, Black TA, Humphreys ER, Griffis TJ, Drewitt GB, Cai T, Nesic Z, Spittlehouse DL, Livingston NJ (2004) Sensitivity and uncertainty of the carbon balance of a pacific northwest douglas-fir forest during an el niño/la niña cycle. Agric For Meteorol 123: 201–219

    Article  Google Scholar 

  • Padro J (1993) An investigation of flux-variance methods and universal functions applied to three land-use types in unstable conditions. Boundary-Layer Meteorol 66: 413–425

    Article  Google Scholar 

  • Sun Y, Solomon S, Dai A, Portman RW (2006) How often does it rain. J Clim 19(6): 916–934

    Article  Google Scholar 

  • Tillman JE (1972) The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions. J Appl Meteorol 11: 783–792

    Article  Google Scholar 

  • Williams CA, Scanlon TM, Albertson JD (2007) Influence of surface heterogeneity on scalar dissimilarity in the roughness sublayer. Boundary-Layer Meteorol 122: 149–165

    Article  Google Scholar 

  • Wyngaard JC, Coté OR, Izumi Y (1971) Local free convection, similarity, and the budgets of shear stress and heat flux. J Atmos Sci 28: 1171–1182

    Article  Google Scholar 

  • Xu L, Baldocchi D, Tang J (2004) How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Glob Biogeochem Cycles 18: GB4002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Luis Dias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dias, N.L., Hong, J., Leclerc, M.Y. et al. A Simple Method of Estimating Scalar Fluxes Over Forests. Boundary-Layer Meteorol 132, 401–414 (2009). https://doi.org/10.1007/s10546-009-9408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-009-9408-0

Keywords

Navigation