Skip to main content
Log in

Assessing Tower Flux Footprint Climatology and Scaling Between Remotely Sensed and Eddy Covariance Measurements

  • Original Paper
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We describe pragmatic and reliable methods to examine the influence of patch-scale heterogeneities on the uncertainty in long-term eddy-covariance (EC) carbon flux data and to scale between the carbon flux estimates derived from land surface optical remote sensing and directly derived from EC flux measurements on the basis of the assessment of footprint climatology. Three different aged Douglas-fir stands with EC flux towers located on Vancouver Island and part of the Fluxnet Canada Research Network were selected. Monthly, annual and interannual footprint climatologies, unweighted or weighted by carbon fluxes, were produced by a simple model based on an analytical solution of the Eulerian advection-diffusion equation. The dimensions and orientation of the flux footprint depended on the height of the measurement, surface roughness length, wind speed and direction, and atmospheric stability. The weighted footprint climatology varied with the different carbon flux components and was asymmetrically distributed around the tower, and its size and spatial structure significantly varied monthly, seasonally and inter-annually. Gross primary productivity (GPP) maps at 10-m resolution were produced using a tower-mounted multi-angular spectroradiometer, combined with the canopy structural information derived from airborne laser scanning (Lidar) data. The horizontal arrays of footprint climatology were superimposed on the 10-m-resolution GPP maps. Monthly and annual uncertainties in EC flux caused by variations in footprint climatology of the 59-year-old Douglas-fir stand were estimated to be approximately 15–20% based on a comparison of GPP estimates derived from EC and remote sensing measurements, and on sensor location bias analysis. The footprint-variation-induced uncertainty in long-term EC flux measurements was mainly dependent on the site spatial heterogeneity. The bias in carbon flux estimates using spatially-explicit ecological models or tower-based remote sensing at finer scales can be estimated by comparing the footprint-weighted and EC-derived flux estimates. This bias is useful for model parameter optimizing. The optimization of parameters in remote-sensing algorithms or ecosystem models using satellite data will, in turn, increase the accuracy in the upscaled regional carbon flux estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiro BD (1998) Footprint climatologies for evapotranspiration in a boreal catchment. Agric For Meteorol 90: 195–201. doi:10.1016/S0168-1923(97)00096-8

    Article  Google Scholar 

  • Baldocchi DD (1997) Flux footprints within and over forest canopies. Boundary-Layer Meteorol 85: 273–292. doi:10.1023/A:1000472717236

    Article  Google Scholar 

  • Baldocchi DD, Falge E, Gu L et al (2001a) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull Am Meteorol Soc 82:2415–2434. doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2

  • Baldocchi DD, Falge E, Wilson K (2001b) A spectral analysis of biosphere–atmosphere trace gas flux densities and meteorological variables across hour to multi-year time scales. Agric Meteorol 107: 1–27. doi:10.1016/S0168-1923(00)00228-8

    Article  Google Scholar 

  • Barford CC, Wofsy SC, Goulden ML et al (2001) Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science 294: 1688–1691. doi:10.1126/science.1062962

    Article  Google Scholar 

  • Buermann W, Dong J, Zeng X, Myneni RB, Dickinson RE (2001) Evaluation of the utility of satellite-based vegetation leaf area index data for climate simulations. J Clim 14:3536–3550, doi:10.1175/1520-0442(2001)014<3536:EOTUOS>2.0.CO;2

    Google Scholar 

  • Chen J, Black T (1991) Measuring leaf area index of plant canopies with branch architecture. Agric Meteorol 57: 1–12. doi:10.1016/0168-1923(91)90074-Z

    Article  Google Scholar 

  • Chen B, Chen JM, Gang M, Yuen C-W, Higuchi K, Chan D (2007) Modeling and scaling coupled energy, water, and carbon fluxes based on remote sensing: An application to Canada’s landmass. J Hydrometeorol 8: 123–143. doi:10.1175/JHM566.1

    Article  Google Scholar 

  • Chen B, Chen JM, Mo G, Black TA, Worthy DEJ (2008) Comparison of regional carbon flux estimates from CO2 concentration measurements and remote sensing based footprint integration. Global Biogeochem Cycles 22: GB2012. doi:10.1029/2007GB003024

    Article  Google Scholar 

  • Coops NC, Hilker T, Wulder MA, St-Onge B, Newnham G, Siggins A et al (2007) Estimating canopy structure of Douglas-fir forest stands from discrete-return lidar. Trees Struct Funct 21: 295–310

    Google Scholar 

  • Coops NC, Black TA, Jassal RS, Trofymow JA, Morgenstern K (2007b) Comparison of MODIS, eddy covariance determined and physiologically modelled gross primary production (GPP) in a Douglas-fir forest stand. Remote Sens Environ 107: 385–401. doi:10.1016/j.rse.2006.09.010

    Article  Google Scholar 

  • Cosh MH, Brutsaert W (2003) Microscale structural aspects of vegetation density variability. J Hydrol (Amst) 276: 128–136. doi:10.1016/S0022-1694(03)00068-4

    Article  Google Scholar 

  • Curtis PS, Hanson PJ, Bolstad P et al (2002) Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agric For Meteorol 113: 3–19. doi:10.1016/S0168-1923(02)00099-0

    Article  Google Scholar 

  • de Haan P, Rotach MW (1998) A novel approach to atmospheric dispersion modellng: the puff-particle model (PPM). Quart J (Roy) Meteorol Soc 124: 2771–2792. doi:10.1002/qj.49712455212

    Article  Google Scholar 

  • Drolet GG, Huemmrich KF, Hall FG, Middleton EM, Black TA, Barr AG et al (2005) A MODIS-derived photochemical reflectance index to detect inter-annual variations in the photosynthetic light-use efficiency of a boreal deciduous forest. Remote Sens Environ 98: 212–224. doi:10.1016/j.rse.2005.07.006

    Article  Google Scholar 

  • Drolet GG, Middleton EM, Huemmrich KF, Hall FG, Amiro BD, Barr AG et al (2008) Regional mapping of gross light-use efficiency using MODIS spectral indices. Remote Sens Environ 112: 3064–3078. doi:10.1016/j.rse.2008.03.002

    Article  Google Scholar 

  • Falge EJ, Tenhunen D, Baldocchi DD (2002) Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements. Agric Meteorol 113: 75–95. doi:10.1016/S0168-1923(02)00103-X

    Article  Google Scholar 

  • Finn D, Lamb B, Leclerc MY, Horst TW (1996) Experimental evaluation of analytical and Lagrangian surface-layer flux footprint models. Boundary-Layer Meteorol 80: 283–308

    Google Scholar 

  • Finnigan J (2004) The footprint concept in complex terrain. Agric Meteorol 127: 117–129. doi:10.1016/j.agrformet.2004.07.008

    Article  Google Scholar 

  • Foken T, Leclerc MY (2004) Methods and limitations in validation of footprint models. Agric Meteorol 127: 223–234. doi:10.1016/j.agrformet.2004.07.015

    Article  Google Scholar 

  • Forseth IN, Norman JM (1991) Modelling of solar irradiance, leaf energy budget, and canopy photosynthesis. In: Hall DO et al (eds) Techniques in photosynthesis and productivity research for a changing environment. Chapman and Hall, London, pp 130–142

    Google Scholar 

  • Fox AM, Huntley B, Lloyd CR, Williams M, Baxter R (2008) Net ecosystem exchange over heterogeneous Arctic tundra: Scaling between chamber and eddy covariance measurements. Global Biogeochem Cycles 22: GB2027. doi:10.1029/2007GB003027

    Article  Google Scholar 

  • Gökede M, Rebmann C, Foken T (2004) A combination of quality assessment tools for eddy co-variance measurements with footprint modelling for the characterisation of complex sites. Agric For Meteorol 127: 175–188. doi:10.1016/j.agrformet.2004.07.012

    Article  Google Scholar 

  • Gougeon FA, Leckie DG (2003) Forest information extraction from high spatial resolution images using an individual tree crown approach. Information Report BC-X-396. Canadian Forest Service, Victoria

  • Gryning SE, Holtslag AAM, Irvin JS, Sivertsen D (1987) Applied dispersion modeling based on meteorological scaling parameters. Atmos Environ 21: 79–89. doi:10.1016/0004-6981(87)90273-3

    Article  Google Scholar 

  • Hall FG, Hilker T, Coops NC, Lyapustin A, Huemmrich KF, Middleton EM (2008) Multi-angle remote sensing of forest light use efficiency by observing PRI variation with canopy shadow fraction. Remote Sens Environ 112: 3201–3211. doi:10.1016/j.rse.2008.03.015

    Article  Google Scholar 

  • Harte J, Kinzig A, Green J (1999) Self-similarity in the distribution and abundance of species. Science 284: 334–336. doi:10.1126/science.284.5412.334

    Article  Google Scholar 

  • Heikkinen JEP, Maljanen M, Aurela M, Hargreaves KJ, Martikainen PJ (2002) Carbon dioxide and methane dynamics in a sub-Arctic peatland in northern Finland. Polar Res 21: 49–62. doi:10.1111/j.1751-8369.2002.tb00066.x

    Article  Google Scholar 

  • Heikkinen JEP, Virtanen T, Huttunen JT, Elsakov V, Martikainen PJ (2004) Carbon balance in east European tundra. Glob Biogeochem Cycles 18: GB1023. doi:10.1029/2003GB002054

    Article  Google Scholar 

  • Hilker T, Coops NC, Nesic Z, Wulder MA, Black AT (2007) Instrumentation and approach for unattended year-round tower based measurements of spectral reflectance. Comput Electron Agric 56: 72–84. doi:10.1016/j.compag.2007.01.003

    Article  Google Scholar 

  • Hilker T, Coops NC, Hall FG, Black TA, Wulder MA, Nesic Z et al (2008a) Separating physiologically and directionally induced changes in PRI using BRDF models. Remote Sens Environ 112: 2777–2788. doi:10.1016/j.rse.2008.01.011

    Article  Google Scholar 

  • Hilker T, Coops NC, Hall FG, Black TA, Chen B, Krishnan P et al (2008b) A modeling approach for upscaling gross ecosystem production to the landscape scale using remote sensing data. J Geophys Res 113: G03006. doi:10.1029/2007JG000666

    Article  Google Scholar 

  • Horst TW, Weil JC (1992) Footprint estimation for scalar flux measurements in the atmospheric surface layer. Boundary-Layer Meteorol 59: 279–296. doi:10.1007/BF00119817

    Article  Google Scholar 

  • Horst TW, Weil JC (1994) How far is far enough? The fetch requirements of micrometeorological measurement of Surface Fluxes. J Atmos Oceanic Tech 11:1018-1025 (corrigenda in J Atmos Ocean Technol 12:447. doi:10.1175/1520-0426(1995)012 < 0447: > 2.0.CO;2

  • Humphreys ER, Black TA, Morgenstern K et al (2005) Net ecosystem production of a Douglas-fir stand for 3 years following clearcut harvesting. Glob Change Biol 11: 450–464. doi:10.1111/j.1365-2486.2005.00914.x

    Article  Google Scholar 

  • Humphreys ER, Black TA, Morgenstern K et al (2006) Carbon dioxide fluxes in three coastal Douglas-fir stands at different stages of development after harvesting. Agric For Meteorol 140: 6–22. doi:10.1016/j.agrformet.2006.03.018

    Article  Google Scholar 

  • Jarvis PG (1995) Scaling processes and problems. Plant Cell Environ 18: 1079–1089. doi:10.1111/j.1365-3040.1995.tb00620.x

    Article  Google Scholar 

  • Jassal RS, Black TA, Cai T et al (2007) Components of ecosystem respiration and estimates of net primary productivity of an intermediate-aged Douglas-fir stand. Agric For Meteorol 144: 44–57. doi:10.1016/j.agrformet.2007.01.011

    Article  Google Scholar 

  • Katul G, Lai C-T, Shafer K, Vidakovik B, Alberson J, Ellsworth D et al (2001) Multiscale analysis of vegetation surface fluxes: From seconds to years. Adv Water Resour 22: 1119–1132. doi:10.1016/S0309-1708(01)00029-X

    Article  Google Scholar 

  • Kim J, Guo Q, Baldocchi DD, Xu L, Leclerc MY (2006) Upscaling CO2 fluxes from tower to landscape: overlaying tower flux footprint calculations on high resolution (IKONOS) vegetation density images. Agric Meteorol 136: 132–146. doi:10.1016/j.agrformet.2004.11.015

    Article  Google Scholar 

  • Kljun N, Kastner-Klein P, Fedorovich E et al (2004) Evaluation of a Lagrangian footprint model using data from wind tunnel convective boundary layer. Agric Meteorol 127: 189–201. doi:10.1016/j.agrformet.2004.07.013

    Article  Google Scholar 

  • Kljun N, Rotach MW, Schmid HP (2002) A 3D backward Lagrangian footprint model for a wide range of boundary layer stratifications. Boundary-Layer Meteorol 103: 205–226. doi:10.1023/A:1014556300021

    Article  Google Scholar 

  • Kljun N, Kormann R, Rotach MW et al (2003) Comparison of the Langrangian footprint model LPDM-B with an analytical footprint model. Boundary-Layer Meteorol 106: 349–355. doi:10.1023/A:1021141223386

    Article  Google Scholar 

  • Kormann R, Meixner FX (2001) An analytic footprint model for neutral stratification. Boundary-Layer Meteorol 99: 207–224. doi:10.1023/A:1018991015119

    Article  Google Scholar 

  • Laine A, Sottocornola M, Kiely G, Byrne KA, Wilson D, Tuittila ES (2006) Estimating net ecosystem exchange in a patterned ecosystem: example from blanket bog. Agric Meteorol 138: 231–243. doi:10.1016/j.agrformet.2006.05.005

    Article  Google Scholar 

  • Leclerc MY, Thurtell GW (1990) Footprint prediction of scalar fluxes using a Markovian analysis. Boundary-Layer Meteorol 52: 247–258. doi:10.1007/BF00122089

    Article  Google Scholar 

  • Leclerc MY, Karipot A, Prabha T, Allwine G, Lamb B, Gholz HL (2003a) Impact of non-local advection on flux footprints over a tall forest canopy: a tracer flux experiment. Agric Meteorol 115: 19–30. doi:10.1016/S0168-1923(02)00168-5

    Article  Google Scholar 

  • Leclerc MY, Meskhidz N, Finn D (2003b) Comparison between measured tracer fluxes and footprint model predictions over a homogeneous canopy of intermediate roughness. Agric Meteorol 117: 145–158. doi:10.1016/S0168-1923(03)00043-1

    Article  Google Scholar 

  • Leclerc MY, Shen S, Lamb B (1997) Observations and large-eddy simulation modeling of footprints in the lower convective boundary layer. J Geophys Res D 120: 9323–9334. doi:10.1029/96JD03984

    Article  Google Scholar 

  • Lin JS, Hildemann LM (1996) Analytical solutions of the atmospheric diffusion equation with multiple sources and height-dependent wind speed and eddy diffusivities. Atmos Environ 30: 239–254. doi:10.1016/1352-2310(95)00287-9

    Article  Google Scholar 

  • Margolis HA, Flanagan LB, Amiro BD (2006) The Fluxnet-Canada Research Network: influence of climate and disturbance on carbon cycling in forests and peatlands. Agric For Meteorol 140: 1–6. doi:10.1016/j.agrformet.2006.08.013

    Article  Google Scholar 

  • Meidinger D, Pojar J (compilers and editors) (1991) Ecosystems of British Columbia. B.C. Min For Special Report Series No. 6. 330p

  • Milne BT, Cohen WB (1999) Multiscale assessment of binary and continuous land cover variables for MODIS validation, mapping and modeling applications. Remote Sens Environ 70: 82–98. doi:10.1016/S0034-4257(99)00059-0

    Article  Google Scholar 

  • Milne BT, Gupta VK, Restrepo C (2002) A scale invariant coupling of plants, water, energy and terrain. Ecoscience 9: 191–199

    Google Scholar 

  • Monteith JL (1972) Solar-radiation and productivity in tropical ecosystems. J Appl Ecol 9: 747–766. doi:10.2307/2401901

    Article  Google Scholar 

  • Monteith JL (1977) Climate and efficiency of crop production in Britain. Philos Trans R Soc London, Ser B. Biol Sci 281: 277–294. doi:10.1098/rstb.1977.0140

    Article  Google Scholar 

  • Morgenstern K, Black TA, Humphreys ER, Griffis TJ, Cai T, Drewitt GB et al (2004) Sensitivity and uncertainty of the carbon balance of a Pacific northwest Douglas-fir forest during an El Niño/La Niña cycle. Agric For Meteorol 123: 201–219. doi:10.1016/j.agrformet.2003.12.003

    Article  Google Scholar 

  • Norman JM (1980) Interfacing leaf and canopy light interception models. In: Hesketh JD, Jones JW (eds) Predicting photosynthesis for ecosystem models. CRC Press, Boca Raton, FL, pp 49–67

    Google Scholar 

  • Oechel WC, Vourlitis GL, Brooks S, Crawford TL, Dumas E (1998) Intercomparison among chamber, tower, and aircraft net CO2 and energy fluxes measured during the Arctic system science land-atmosphere-ice interactions (ARCSS-LAII) flux study. J Geophys Res 103: 28993–29003. doi:10.1029/1998JD200015

    Article  Google Scholar 

  • Pasquill F (1974) Atmospheric diffusion: the dispersion of windborne material from industrial and other sources 2nd edn. Wiley, New York, p 429

    Google Scholar 

  • Pasquill F, Smith FB (1983) Atmospheric Diffusion, 3rd edn. Wiley, New York, p 437

    Google Scholar 

  • Poveda G, Luis SF (2004) Annual and interannual (ENSO) variability of spatial scaling properties of a vegetation index (NDVI) in Amazonia. Remote Sens Environ 93: 391–401. doi:10.1016/j.rse.2004.08.001

    Article  Google Scholar 

  • Rotach MW, Gryning S-E, Tassone C (1996) A two-dimensional lagrangian stochastic dispersion model for daytime conditions. Quart J (Roy) Meteorol Soc 122: 367–389. doi:10.1002/qj.49712253004

    Article  Google Scholar 

  • Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Jolly M (2004) A continuous satellite-derived measure of global terrestrial primary productivity: Future science and applications. Bioscience 56: 547–560. doi:10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2

    Article  Google Scholar 

  • Schmid HP (1994) Source areas for scalar and scalar fluxes. Boundary-Layer Meteorol 67: 293–318. doi:10.1007/BF00713146

    Article  Google Scholar 

  • Schmid HP (1997) Experimental design for flux measurements: matching scales of observations and fluxes. Agric For Meteorol 87: 179–200. doi:10.1016/S0168-1923(97)00011-7

    Article  Google Scholar 

  • Schmid HP, Lloyd CR (1999) Spatial representativeness and the location bias of flux footprint over inhomogeneous areas. Agric Meteorol 93: 195–209. doi:10.1016/S0168-1923(98)00119-1

    Article  Google Scholar 

  • Schmid HP (2002) Footprint modelling for vegetation atmosphere exchange studies: a review and perspective. Agric For Meteorol 113: 159–183. doi:10.1016/S0168-1923(02)00107-7

    Article  Google Scholar 

  • Schuepp PH, Leclerc MY, Macpherson JI et al (1990) Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary-Layer Meteorol 50: 353–373. doi:10.1007/BF00120530

    Article  Google Scholar 

  • Shen S, Leclerc MY (1995) How large must surface layer inhomogeneities be before they influence the convective boundary layer structure? A case study. Q J R Meteorol Soc 121: 1209–1228. doi:10.1002/qj.49712152603

    Article  Google Scholar 

  • Soegaard H, Jensen NO, Boegh E, Hasager CB, Schelde K, Thomsen A (2003) Carbon dioxide exchange over agricultural landscape using eddy correlation and footprint modeling. Agric Meteorol 114: 153–173. doi:10.1016/S0168-1923(02)00177-6

    Article  Google Scholar 

  • Sogachev A, Rannik U, Vesala T (2004) Flux footprints over complex terrain covered by heterogeneous forest. Agric For Meteorol 127: 142–158. doi:10.1016/j.agrformet.2004.07.010

    Article  Google Scholar 

  • Stoughton TE, Miller DR, Yang X, Hendrey GM (2000) Footprint climatology estimation of potential control ring contamination at the Duke Forest FACTS-1 experiment site. Agric Meteorol 100: 73–82. doi:10.1016/S0168-1923(99)00077-5

    Article  Google Scholar 

  • Sun H, Clark TL, Stull RB, Black TA (2006) Two-dimensional simulation of airflow and carbon dioxide transport over a forested mountain Part I: Interactions between thermally-forced circulations. Agric For Meteorol 140: 338–351. doi:10.1016/j.agrformet.2006.03.023

    Article  Google Scholar 

  • Tilman D, Kareiva P (eds) (1997) Spatial Ecology. Princeton University Press, Princeton, 368 pp

    Google Scholar 

  • Trofymow JA, Stinson G, Kurz WA (2008) Derivation of a spatially-explicit 86-year retrospective carbon budget for a landscape undergoing conversion from old-growth to managed forests on Vancouver Island. BC for Eco Man 256: 1677–1691

    Article  Google Scholar 

  • van Ulden AP (1978) Simple estimates for vertical diffusion from sources near the ground. Atmos Environ 12: 2125–2129. doi:10.1016/0004-6981(78)90167-1

    Article  Google Scholar 

  • Vesala T, Rannik U, Leclerc M, Foken T (2003) Flux and concentration footprints. Agric For Meteorol 127: 111–116. doi:10.1016/j.agrformet.2004.07.007

    Article  Google Scholar 

  • Wilson JD, Swaters GE (1991) The source area influencing a measurement in the planetary boundary layer: the footprint and the distribution of contact distance. Boundary-Layer Meteorol 55: 25–46. doi:10.1007/BF00119325

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baozhang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, B., Black, T.A., Coops, N.C. et al. Assessing Tower Flux Footprint Climatology and Scaling Between Remotely Sensed and Eddy Covariance Measurements. Boundary-Layer Meteorol 130, 137–167 (2009). https://doi.org/10.1007/s10546-008-9339-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-008-9339-1

Keywords

Navigation