Skip to main content
Log in

Seeing the Fields and Forests: Application of Surface-Layer Theory and Flux-Tower Data to Calculating Vegetation Canopy Height

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Canopy height is an important and dynamic site variable that affects the mass and energy exchanges between vegetation and the atmosphere. We develop a method to estimate canopy height routinely, using surface-layer theory and turbulence measurements made from a collection of flux towers. This tool is based on connecting the logarithmic wind profile generally expected in a neutral surface layer with direct measurements of friction velocity and assumptions about canopy height’s relationships with zero-plane displacement and aerodynamic roughness length. Tests over a broad range of canopy types and heights find that calculated values are in good agreement with direct measurements of canopy height, including in a heterogeneous landscape. Based on the various uncertainties associated with our starting assumptions about canopy micrometeorology, we present a blueprint for future work that is necessary for expanding and improving these initial calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aber JD (1979) Foliage-height profiles and succession in northern hardwood forests. Ecology 60:18–23. doi:10.2307/1936462

    Article  Google Scholar 

  • Allen RG (1986) A Penman for all seasons. J Irrig Drain Eng 112:348–368. doi:10.1061/(ASCE)0733-9437(1986)112:4(348)

    Article  Google Scholar 

  • Baldocchi DD, Chen Q, Chen X, et al (2010) The dynamics of energy, water, and carbon fluxes in a blue oak (Quercus douglasii) savanna in California. In: Hill M, Hanan N (eds) Ecosystem Function in Savannas, Taylor and Francis Group, Boca Raton, FL, p 135–154

  • Chen B, Black TA, Coops NC et al (2009) Assessing tower flux footprint climatology and scaling between remotely sensed and eddy covariance measurements. Boundary-Layer Meteorol 130:137–167. doi:10.1007/s10546-008-9339-1

    Article  Google Scholar 

  • Chen G, Hay GJ (2011) An airborne lidar sampling strategy to model forest canopy height from Quickbird imagery and GEOBIA. Remote Sens Environ 115:1532–1542. doi:10.1016/j.rse.2011.02.012

    Article  Google Scholar 

  • Chen Q, Baldocchi D, Gong P, Kelly M (2006) Isolating individual trees in a savanna woodland using small footprint lidar data. Photogramm Eng Remote Sens 72:923–932

    Article  Google Scholar 

  • Devkota KP, Manschadi AM, Devkota M et al (2013) Simulating the impact of climate change on rice phenology and grain yield in irrigated drylands of Central Asia. J Appl Meteorol Climatol 52:2033–2050. doi:10.1175/JAMC-D-12-0182.1

    Article  Google Scholar 

  • Dickinson RE, Hanson B (1984) Vegetation-albedo feedbacks. In: Hansen J, Takahashi T (eds) Climate Processes and Climate Sensitivity, American Geophysical Union, Washington, DC, p 180–186

  • Drake JB, Dubayah RO, Knox RG et al (2002) Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest. Remote Sens Environ 81:378–392. doi:10.1016/S0034-4257(02)00013-5

    Article  Google Scholar 

  • Drake JB, Knox RG, Dubayah RO et al (2003) Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships. Glob Ecol Biogeogr 12:147–159. doi:10.1046/j.1466-822X.2003.00010.x

    Article  Google Scholar 

  • Draxl C, Hahmann A, Pena A, Giebel G (2012) Evaluating winds and vertical wind shear from Weather Research and Forecasting model forecasts using seven planetary boundary layer schemes. Wind Energy 17:39–55. doi:10.1002/we

    Article  Google Scholar 

  • Dubayah RO, Drake JB (2000) Lidar remote sensing for forestry applications. J For 98:44–46

    Google Scholar 

  • Dyer AJ (1974) A review of flux-profile relationships. Boundary-Layer Meteorol 7:363–372. doi:10.1007/BF00240838

    Article  Google Scholar 

  • Dyer AJ, Hicks BB (1972) The spatial variability of eddy fluxes in the constant flux layer. Q J R Meteorol Soc 98:206–212. doi:10.1002/qj.49709841518

    Article  Google Scholar 

  • Fares S, Weber R, Park JH et al (2012) Ozone deposition to an orange orchard: partitioning between stomatal and non-stomatal sinks. Environ Pollut 169:258–266. doi:10.1016/j.envpol.2012.01.030

    Article  Google Scholar 

  • Finnigan J (2004) The footprint concept in complex terrain. Agric For Meteorol 127:117–129. doi:10.1016/j.agrformet.2004.07.008

    Article  Google Scholar 

  • Finnigan JJ (1979) Turbulence in waving wheat. Boundary-Layer Meteorol 16:181–211

    Google Scholar 

  • Finnigan JJ (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32(519):571. doi:10.2480/agrmet.20.1

    Google Scholar 

  • Gardiner BA (1994) Wind and wind forces in a plantation spruce forest. Boundary-Layer Meteorol 67:161–186. doi:10.1007/BF00705512

    Article  Google Scholar 

  • Garratt JR (1994) The atmospheric boundary layer. Cambridge University Press, Cambridge, 316 pp

  • Gash JHC, Dolman AJ (2003) Sonic anemometer (co)sine response and flux measurement: I. The potential for (co)sine error to affect sonic anemometer-based flux measurements. Agric For Meteorol 119:195–207. doi:10.1016/S0168-1923(03)00137-0

    Article  Google Scholar 

  • Gu L, Falge EM, Boden T et al (2005) Objective threshold determination for nighttime eddy flux filtering. Agric For Meteorol 128:179–197. doi:10.1016/j.agrformet.2004.11.006

    Article  Google Scholar 

  • Harman IN, Finnigan JJ (2007) A simple unified theory for flow in the canopy and roughness sublayer. Boundary-Layer Meteorol 123:339–363. doi:10.1007/s10546-006-9145-6

    Article  Google Scholar 

  • Hogstrom U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42:55–78. doi:10.1007/BF00119875

    Article  Google Scholar 

  • Hollinger DY, Richardson a D (2005) Uncertainty in eddy covariance measurements and its application to physiological models. Tree Physiol 25:873–885. doi:10.1093/treephys/25.7.873

    Article  Google Scholar 

  • Hopkinson C, Lovell J, Chasmer L et al (2013) Integrating terrestrial and airborne lidar to calibrate a 3D canopy model of effective leaf area index. Remote Sens Environ 136:301–314. doi:10.1016/j.rse.2013.05.012

    Article  Google Scholar 

  • Hsieh CI, Katul G, Chi TW (2000) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Adv Water Resour 23:765–772. doi:10.1016/S0309-1708(99)00042-1

    Article  Google Scholar 

  • Kane VR, McGaughey RJ, Bakker JD et al (2010) Comparisons between field- and LiDAR-based measures of stand structural complexity. Can J For Res 40:761–773. doi:10.1139/X10-024

    Article  Google Scholar 

  • Kim J, Guo Q, Baldocchi DD et al (2006) Upscaling fluxes from tower to landscape: overlaying flux footprints on high-resolution (IKONOS) images of vegetation cover. Agric For Meteorol 136:132–146. doi:10.1016/j.agrformet.2004.11.015

    Article  Google Scholar 

  • Knox SH, Sturtevant C, Matthes JH et al (2014) Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento–San Joaquin Delta. Glob Change Biol. doi:10.1111/gcb.12745

  • Kochendorfer J, Meyers T, Frank J et al (2012) How well can we measure the vertical wind speed? Implications for fluxes of energy and mass. Boundary-Layer Meteorol 145:383–398. doi:10.1007/s10546-012-9738-1

    Article  Google Scholar 

  • Lefsky MA, Cohen WB, Harding DJ et al (2002) Lidar remote sensing of above-ground biomass in three biomes. Glob Ecol Biogeogr 11:393–399. doi:10.1046/j.1466-822x.2002.00303.x

    Article  Google Scholar 

  • Lefsky MA, Harding DJ, Keller M et al (2005) Estimates of forest canopy height and aboveground biomass using ICESat. Geophys Res Lett 32:L22S02. doi:10.1029/2005GL023971

    Article  Google Scholar 

  • Leuning R, Cleugh HA, Zegelin SJ, Hughes D (2005) Carbon and water fluxes over a temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: measurements and comparison with MODIS remote sensing estimates. Agric For Meteorol 129:151–173. doi:10.1016/j.agrformet.2004.12.004

    Article  Google Scholar 

  • Lovell JL, Jupp DLB, Culvenor DS, Coops NC (2003) Using airborne and ground-based ranging lidar to measure canopy structure in Australian forests. Can J Remote Sens 29:607–622. doi:10.5589/m03-026

    Article  Google Scholar 

  • Ma S, Baldocchi DD, Xu L, Hehn T (2007) Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agric For Meteorol 147:157–171. doi:10.1016/j.agrformet.2007.07.008

    Article  Google Scholar 

  • Marcolla B, Cescatti A, Montagnani L et al (2005) Importance of advection in the atmospheric CO2 exchanges of an alpine forest. Agric For Meteorol 130:193–206. doi:10.1016/j.agrformet.2005.03.006

    Article  Google Scholar 

  • Mascaro J, Detto M, Asner GP, Muller-Landau HC (2011) Evaluating uncertainty in mapping forest carbon with airborne LiDAR. Remote Sens Environ 115:3770–3774. doi:10.1016/j.rse.2011.07.019

    Article  Google Scholar 

  • Mauder M (2013) A comment on how well can we measure the vertical wind speed? Implications for fluxes of energy and mass by Kochendorfer et al. Boundary-Layer Meteorol 147:329–335. doi:10.1007/s10546-012-9794-6

    Article  Google Scholar 

  • Metzger M, McKeon BJ, Holmes H (2007) The near-neutral atmospheric surface layer: turbulence and non-stationarity. Philos Trans A Math Phys Eng Sci 365:859–876. doi:10.1098/rsta.2006.1946

    Article  Google Scholar 

  • Moncrieff JB, Malhi Y, Leuning R (1996) The propagation of errors in long-term measurements of land-atmosphere fluxes of carbon and water. Glob Change Biol 2:231–240. doi:10.1111/j.1365-2486.1996.tb00075.x

    Article  Google Scholar 

  • Ni W, Woodcock CE (2000) Effect of canopy structure and the presence of snow on the albedo of boreal conifer forests. J Geophys Res Atmos 105:11879–11888. doi:10.1029/1999JD901158

    Article  Google Scholar 

  • Oncley S, Friehe C, Larue J et al (1996) Surface-layer fluxes, profiles, and turbulence measurements over uniform terrain under near-neutral conditions. J Atmos Sci 53:1029–1044

    Article  Google Scholar 

  • Osborne TM, Lawrence DM, Challinor AJ et al (2007) Development and assessment of a coupled crop-climate model. Glob Change Biol 13:169–183. doi:10.1111/j.1365-2486.2006.01274.x

    Article  Google Scholar 

  • Papale D, Reichstein M, Aubinet M et al (2006) Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3:571–583. doi:10.5194/bg-3-571-2006

    Article  Google Scholar 

  • Parker GG, Harmon ME, Lefsky MA et al (2004) Three-dimensional structure of an old-growth Pseudotsuga-Tsuga canopy and its implications for radiation balance, microclimate, and gas exchange. Ecosystems 7:440–453. doi:10.1007/s10021-004-0136-5

    Article  Google Scholar 

  • Paw UKT, Falk M, Suchanek TH et al (2004) Carbon dioxide exchange between an old-growth forest and the atmosphere. Ecosystems 7:513–524

    Google Scholar 

  • Peña A, Floors R, Gryning SE (2014) The Høvsøre tall wind-profile experiment: a description of wind profile observations in the atmospheric boundary layer. Boundary-Layer Meteorol 150:69–89. doi:10.1007/s10546-013-9856-4

    Article  Google Scholar 

  • Raupach MR (1994) Simplified expressions for vegetation roughness length and zero-plane displacement as functions of canopy height and area index. Boundary-Layer Meteorol 71:211–216. doi:10.1007/BF00709229

    Article  Google Scholar 

  • Raupach MR, Finnigan JJ, Brunei Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 78:351–382. doi:10.1007/BF00120941

    Article  Google Scholar 

  • Saremi H, Kumar L, Turner R, Stone C (2014) Airborne LiDAR derived canopy height model reveals a significant difference in radiata pine (Pinus radiata D. Don) heights based on slope and aspect of sites. Trees-Struct Funct 28:733–744. doi:10.1007/s00468-014-0985-2

    Article  Google Scholar 

  • Shaw RH, Pereira a (1982) Aerodynamic roughness of a plant canopy: a numerical experiment. Agric Meteorol 26:51–65. doi:10.1016/0002-1571(82)90057-7

    Article  Google Scholar 

  • Simard M, Pinto N, Fisher JB, Baccini A (2011) Mapping forest canopy height globally with spaceborne lidar. J Geophys Res 116:G04021. doi:10.1029/2011JG001708

    Google Scholar 

  • Thomas RQ, Hurtt GC, Dubayah R, Schilz MH (2008) Using lidar data and a height-structured ecosystem model to estimate forest carbon stocks and fluxes over mountainous terrain. Can J Remote Sens 34:S351–S363. doi:10.5589/m08-036

    Article  Google Scholar 

  • Tian X, Li ZY, Van der Tol C et al (2011) Estimating zero-plane displacement height and aerodynamic roughness length using synthesis of LiDAR and SPOT-5 data. Remote Sens Environ 115:2330–2341

    Article  Google Scholar 

  • Timm AU, Roberti DR, Streck NA et al (2014) Energy partitioning and evapotranspiration over a rice paddy in Southern Brazil. J Hydrometeorol 15:1975–1988. doi:10.1175/JHM-D-13-0156.1

    Article  Google Scholar 

  • Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82. doi:10.3354/cr030079

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the following AmeriFlux sites for their data records: US-Ton, US-Var,US-Tw3,US-Twt, US-Wrc and US-Lin. In addition, funding for AmeriFlux data resources was provided by the U.S. Department of Energy’s Office of Science. Funding for AmeriFlux core site data, US-Ton, US-Var,US-Tw3,US-Twt,was provided by the U.S. Department of Energy’s Office of Science, the USDA-AFRI project and the California Department of Water Resources. We acknowledge the FLUXNET project and OZFLUX for providing data from the Australian site, AU-Tum. In addition, we thank Silvano Fares and Allen Goldstein for providing their citrus grove data and for insightful discussions about the analysis. We appreciate the helpful comments of the anonymous reviewers and Berkeley Biometeorology Lab members Cove Sturtevant and Sara Knox that greatly improved the manuscript. Thank you to Joe Verfaillie for maintaining the rice, alfalfa and tonzi site equipment and data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Pennypacker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pennypacker, S., Baldocchi, D. Seeing the Fields and Forests: Application of Surface-Layer Theory and Flux-Tower Data to Calculating Vegetation Canopy Height. Boundary-Layer Meteorol 158, 165–182 (2016). https://doi.org/10.1007/s10546-015-0090-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-015-0090-0

Keywords

Navigation