Skip to main content

Advertisement

Log in

Flux-Variance Method for Latent Heat and Carbon Dioxide Fluxes in Unstable Conditions

  • Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Applied previously to momentum and heat fluxes, the present study extends the flux-variance method to latent heat and CO2 fluxes in unstable conditions. Scalar similarity is also examined among temperature (θ), water vapour (q), and CO2 (c). Temperature is adopted as the reference scalar, leading to two feasible strategies to estimate latent heat and CO2 fluxes: the first one relies on flux-variance similarity relations for scalars, while the second is based on the parameterization of relative transport efficiency in terms of scalar correlation coefficient and a non-dimensional quantity. The relationship between the θ-to-q transport efficiency (λ θ q ) and θ-q correlation coefficient (R θ q ) is used to describe the intermediate hydrological conditions. We also parameterize the θ-to-c transport efficiency (λ θ c ) as a function of the θ-c correlation coefficient (R θ c ) by introducing a new non-dimensional ratio (α). The flux-variance method is a viable technique for flux gap-filling, when turbulence measurements of wind velocity are not available. It is worth noting that the extended method is not exempt from a correction for density effects when used for estimating water or carbon exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertson JD, Parlange MB, Katul GG, Chu CR, Stricker H, Tyler S (1995) Sensible heat flux from arid regions: a simple flux-variance method. Water Resour Res 31: 969–973. doi:10.1029/94WR02978

    Article  Google Scholar 

  • Asanuma J, Brutsaert W (1999) Turbulence variance characteristics of temperature and humidity in the unstable atmospheric surface layer above a variable pine forest. Water Resour Res 35: 515–521. doi:10.1029/1998WR900051

    Article  Google Scholar 

  • Asanuma J, Tamagawa I, Ishikawa H, Ma YM, Hayashi T, Qi YQ, Wang JM (2007) Spectral similarity between scalars at very low frequencies in the unstable atmospheric surface layer over the Tibetan plateau. Boundary-Layer Meteorol 122: 85–103. doi:10.1007/s10546-006-9096-y

    Article  Google Scholar 

  • Bink NJ, Meesters AGCA (1997) Comment on ‘Estimation of surface heat and momentum fluxes using the flux-variance method above uniform and non-uniform terrain’ by Katul et al. (1995). Boundary-Layer Meteorol 84: 497–502. doi:10.1023/A:1000427431944

    Article  Google Scholar 

  • Cava D, Katul GG, Sempreviva AM, Giostra U, Scrimieri A (2008) On the anomalous behaviour of scalar flux-variance similarity functions within the canopy sub-layer of a dense alpine Forest. Boundary-Layer Meteorol 128: 33–57. doi:10.1007/s10546-008-9276-z

    Article  Google Scholar 

  • Choi T, Hong J, Kim J, Lee H, Asanuma J, Ishikawa H, Tsukamoto O, Gao ZQ, Ma YM, Ueno K, Wang JM, Koike T, Yasunari T (2004) Turbulent exchange of heat, water vapor, and momentum over a Tibetan prairie by eddy covariance and flux variance measurements. J Geophys Res 109: D21106. doi:10.1029/2004JD004767

    Article  Google Scholar 

  • De Bruin HAR, Hartogensis OK (2005) Variance method to determine turbulent fluxes of momentum and sensible heat in the stable atmospheric surface layer. Boundary-Layer Meteorol 116: 385–392. doi:10.1007/s10546-004-1986-2

    Article  Google Scholar 

  • Dias NL, Brutsaert W (1996) Similarity of scalars under stable conditions. Boundary-Layer Meteorol 80: 355–373. doi:10.1007/BF00119423

    Article  Google Scholar 

  • Dias NL, Hong J, Leclerc MY, Black TA, Nesic Z, Krishnan P (2008) An aerodynamic-variance method for scalar flux gap-filling over forests. Agric Meteorol (Accepted for publication)

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric Meteorol 78: 83–105. doi:10.1016/0168-1923(95)02248-1

    Article  Google Scholar 

  • Gao ZQ, Bian LG, Chen ZG, Sparrow M, Zhang JH (2006) Turbulent variance characteristics of temperature and humidity over a non-uniform land surface for an agricultural ecosystem in China. Adv Atmos Sci 23: 365–374. doi:10.1007/s00376-006-0365-y

    Article  Google Scholar 

  • Glickman TS (2000) Glossary of meteorology. American Meteorological Society, Boston, p 855

    Google Scholar 

  • Guo XF, Cai XH, Kang L, Zhu T, Zhang HS (2008) Effects of vegetative heterogeneity and patch-scale harvest on energy balance closure and flux measurements. Theor Appl Climatol. doi:10.1007/s00704-008-0031-7

  • Hill RJ (1989) Implications of Monin-Obukhov similarity theory for scalar quantities. J Atmos Sci 46: 2236–2244. doi:10.1175/1520-0469(1989)046<2236:IOMSTF>2.0.CO;2

    Article  Google Scholar 

  • Hollinger DY, Aber J, Dail B, Davidson EA, Goltz SM, Hughes H, Leclerc MY, Lee JT, Richardson AD, Rodrigues C, Scott NA (2004) Spatial and temporal variability in forest-atmosphere CO2 exchange. Glob Change Biol 10: 1689–1706. doi:10.1111/j.1365-2486.2004.00847.x

    Article  Google Scholar 

  • Hsieh CI, Katul GG, Schieldge J, Sigmon J, Knoerr KR (1996) Estimation of momentum and heat fluxes using dissipation and flux-variance methods in the unstable surface layer. Water Resour Res 32: 2453–2462. doi:10.1029/96WR01337

    Article  Google Scholar 

  • Iwata T, Yoshikawa K, Higuchi Y, Yamashita T, Kato S, Ohtaki E (2005) The spectral density technique for the determination of CO2 flux over the ocean. Boundary-Layer Meteorol 117: 511–523. doi:10.1007/s10546-005-2773-4

    Article  Google Scholar 

  • Katul G, Hsieh CI (1997) Reply to the comment by Bink and Meesters. Boundary-Layer Meteorol 84: 503–509. doi:10.1023/A:1000479416015

    Article  Google Scholar 

  • Katul GG, Hsieh CI (1999) A note on the flux-variance similarity relationships for heat and water vapour in the unstable atmospheric surface layer. Boundary-Layer Meteorol 90: 327–338. doi:10.1023/A:1001747925158

    Article  Google Scholar 

  • Katul G, Goltz SM, Hsieh CI, Cheng Y, Mowry F, Sigmon J (1995) Estimation of surface heat and momentum fluxes using the flux-variance method above uniform and non-uniform terrain. Boundary-Layer Meteorol 74: 237–260. doi:10.1007/BF00712120

    Article  Google Scholar 

  • Katul G, Hsieh CI, Oren R, Ellsworth D, Phillips N (1996) Latent and sensible heat flux predictions from a uniform pine forest using surface renewal and flux variance methods. Boundary-Layer Meteorol 80: 249–282. doi:10.1007/BF00119545

    Google Scholar 

  • Kustas WP, Blanford JH, Stannard DI, Daughtry CST, Nichols WD, Weltz MA (1994) Local energy flux estimates for unstable conditions using variance data in semiarid rangelands. Water Resour Res 30: 1351–1361. doi:10.1029/93WR03084

    Article  Google Scholar 

  • Lamaud E, Irvine M (2006) Temperature-humidity dissimilarity and heat-to-water-vapour transport efficiency above and within a pine forest canopy: the role of the Bowen ratio. Boundary-Layer Meteorol 120: 87–109. doi:10.1007/s10546-005-9032-6

    Article  Google Scholar 

  • Laubach J, Teichmann U (1999) Surface energy budget variability: a case study over grass with special regard to minor inhomogeneities in the source area. Theor Appl Climatol 62: 9–24. doi:10.1007/s007040050070

    Article  Google Scholar 

  • Lee X, Massman W, Law B (2004) Handbook of micrometeorology: a guide for surface flux measurements and analysis. Kluwer Academic Publishers, Dordrecht, p 250

    Google Scholar 

  • Leuning R (2007) The correct form of the Webb, Pearman and Leuning equation for eddy fluxes of trace gases in steady and non-steady state, horizontally homogeneous flows. Boundary-Layer Meteorol 123: 263–267. doi:10.1007/s10546-006-9138-5

    Article  Google Scholar 

  • Leuning R, Denmead OT, Lang ARG (1982) Effects of heat and water vapor transport on eddy covariance measurement of CO2 fluxes. Boundary-Layer Meteorol 23: 209–222. doi:10.1007/BF00123298

    Article  Google Scholar 

  • Liebethal C, Foken T (2003) On the significance of the Webb correction to fluxes. Boundary-Layer Meteorol 109: 99–106. doi:10.1023/A:1025421903542

    Article  Google Scholar 

  • Liebethal C, Foken T (2004) On the significance of the Webb correction to fluxes: Corrigendum. Boundary-Layer Meteorol 113: 301. doi:10.1023/B:BOUN.0000039451.75031.ce

    Article  Google Scholar 

  • Liu XH, Tsukamoto O, Oikawa T, Ohtaki E (1998) A study of correlations of scalar quantities in the atmospheric surface layer. Boundary-Layer Meteorol 87: 499–508. doi:10.1023/A:1000947709324

    Article  Google Scholar 

  • Lloyd CR, Culf AD, Dolman AJ, Gash JHC (1991) Estimates of sensible heat flux from observations of temperature fluctuations. Boundary-Layer Meteorol 57: 311–322. doi:10.1007/BF00120051

    Article  Google Scholar 

  • Mauder M, Foken T (2006) Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorologische Z 15: 597–609. doi:10.1127/0941-2948/2006/0167

    Article  Google Scholar 

  • McBean GA, Miyake M (1972) Turbulent transfer mechanisms in the atmospheric surface layer. Q J Roy Meteorol Soc 98: 383–398. doi:10.1002/qj.49709841610

    Article  Google Scholar 

  • McMillen RT (1988) An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorol 43: 231–245. doi:10.1007/BF00128405

    Article  Google Scholar 

  • Moene AF, Schüttemeyer D (2008) The effect of surface heterogeneity on the temperature-humidity correlation and the relative transport efficiency. Boundary-Layer Meteorol 129: 99–113. doi:10.1007/s10546-008-9312-z

    Article  Google Scholar 

  • Moriwaki R, Kanda M (2006) Local and global similarity in turbulent transfer of heat, water vapour, and CO2 in the dynamic convective sublayer over a suburban area. Boundary-Layer Meteorol 120: 163–179. doi:10.1007/s10546-005-9034-4

    Article  Google Scholar 

  • Ohtaki E (1980) Turbulent transport of carbon dioxide over a paddy field. Boundary-Layer Meteorol 19: 315–336. doi:10.1007/BF00120595

    Article  Google Scholar 

  • Ohtaki E (1985) On the similarity in atmospheric fluctuations of carbon dioxide, water vapor and temperature over vegetated fields. Boundary-Layer Meteorol 32: 25–37. doi:10.1007/BF00120712

    Article  Google Scholar 

  • Padro J (1993) An investigation of flux-variance methods and universal functions applied to three land-use types in unstable conditions. Boundary-Layer Meteorol 66: 413–425. doi:10.1007/BF00712731

    Article  Google Scholar 

  • Pearson RJ Jr, Oncley SP, Delany AC (1998) A scalar similarity study based on surface layer ozone measurements over cotton during the California Ozone Deposition Experiment. J Geophys Res 103(D15): 18919–18926. doi:10.1029/98JD01479

    Article  Google Scholar 

  • Phelps GT, Pond S (1971) Spectra of the temperature and humidity fluctuations and of the fluxes of moisture and sensible heat in the marine boundary layer. J Atmos Sci 28: 918–928. doi:10.1175/1520-0469(1971)028<0918:SOTTAH>2.0.CO;2

    Article  Google Scholar 

  • Prueger JH, Kustas WP, Hipps LE, Hatfield JL (2004) Aerodynamic parameters and sensible heat flux estimates for a semi-arid ecosystem. J Arid Environ 57: 87–100. doi:10.1016/S0140-1963(03)00090-9

    Article  Google Scholar 

  • Roth M, Oke TR (1995) Relative efficiencies of turbulent transfer of heat, mass, and momentum over a patchy urban surface. J Atmos Sci 52: 1863–1874. doi:10.1175/1520-0469(1995)052<1863:REOTTO>2.0.CO;2

    Article  Google Scholar 

  • Ruppert J, Thomas C, Foken T (2006) Scalar similarity for relaxed eddy accumulation methods. Boundary-Layer Meteorol 120: 39–63. doi:10.1007/s10546-005-9043-3

    Article  Google Scholar 

  • Sahlée E, Smedman A, Rutgersson A, Högström U (2007) Spectra of CO2 and water vapor in the marine atmospheric surface layer. Boundary-Layer Meteorol. doi:10.1007/s10546-007-9230-5

  • Saigusa N, Yamamoto S, Hirata R, Ohtani Y, Ide R, Asanuma J, Gamo M, Hirano T, Kondo H, Kosugi Y, Li SG, Nakai Y, Takagi K, Tani M, Wang H (2008) Temporal and spatial variations in the seasonal patterns of CO2 flux in boreal, temperate, and tropical forests in East Asia. Agric Meteorol 148: 700–713. doi:10.1016/j.agrformet.2007.12.006

    Article  Google Scholar 

  • Schotanus P, Nieuwstadt FTM, De Bruin HAR (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluctuations. Boundary-Layer Meteorol 26: 81–93. doi:10.1007/BF00164332

    Article  Google Scholar 

  • Sempreviva AM, Hojstrup J (1998) Transport of temperature and humidity variance and covariance in the marine surface layer. Boundary-Layer Meteorol 87: 233–253. doi:10.1023/A:1000986130783

    Article  Google Scholar 

  • Stull R (1988) An introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht, p 297

    Google Scholar 

  • Sugita M, Kawakubo N (2003) Surface and mixed-layer variance methods to estimate regional sensible heat flux at the surface. Boundary-Layer Meteorol 106: 117–145. doi:10.1023/A:1020866908049

    Article  Google Scholar 

  • Tillman JE (1972) The indirect determination of stability, heat and momentum fluxes in the atmospheric boundary layer from simple scalar variables during dry unstable conditions. J Appl Meteorol 11: 783–792. doi:10.1175/1520-0450(1972)011<0783:TIDOSH>2.0.CO;2

    Article  Google Scholar 

  • van Dijk AIJM, Bruijnzeel LA, Schellekens J (2004) Micrometeorology and water use of mixed crops in upland West Java, Indonesia. Agric Meteorol 124: 31–49. doi:10.1016/j.agrformet.2004.01.006

    Article  Google Scholar 

  • Weaver HL (1990) Temperature and humidity flux-variance relations determined by one-dimensional eddy correlation. Boundary-Layer Meteorol 53: 77–91. doi:10.1007/BF00122464

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J Roy Meteorol Soc 106: 85–100. doi:10.1002/qj.49710644707

    Article  Google Scholar 

  • Wesely ML (1988) Use of variance techniques to measure dry air-surface exchange rates. Boundary-Layer Meteorol 44: 13–31. doi:10.1007/BF00117291

    Article  Google Scholar 

  • Wesely ML, Thurtell GW, Tanner CB (1970) Eddy correlation measurements of sensible heat flux near the earth’s surface. J Appl Meteorol 9: 45–50. doi:10.1175/1520-0450(1970)009<0045:ECMOSH>2.0.CO;2

    Article  Google Scholar 

  • Wesson KH, Katul G, Lai CT (2001) Sensible heat flux estimation by flux variance and half-order time derivative methods. Water Resour Res 37: 2333–2343. doi:10.1029/2001WR900021

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99: 127–150. doi:10.1023/A:1018966204465

    Article  Google Scholar 

  • Williams CA, Scanlon TM, Albertson JD (2007) Influence of surface heterogeneity on scalar dissimilarity in the roughness sublayer. Boundary-Layer Meteorol 122: 149–165. doi:10.1007/s10546-006-9097-x

    Article  Google Scholar 

  • Wyngaard JC, Cote OR (1971) The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J Atmos Sci 28: 190–201. doi:10.1175/1520-0469(1971)028<0190:TBOTKE>2.0.CO;2

    Article  Google Scholar 

  • Wyngaard JC, Cote OR, Izumi Y (1971) Local free convection, similarity, and the budgets of shear stress and heat flux. J Atmos Sci 28: 1171–1182. doi:10.1175/1520-0469(1971)028<1171:LFCSAT>2.0.CO;2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongsheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, X., Zhang, H., Cai, X. et al. Flux-Variance Method for Latent Heat and Carbon Dioxide Fluxes in Unstable Conditions. Boundary-Layer Meteorol 131, 363–384 (2009). https://doi.org/10.1007/s10546-009-9377-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-009-9377-3

Keywords

Navigation